ТУРБОМОЛЕКУЛЯРНЫЙ ВАКУУМНЫЙ НАСОС

ТУРБОМОЛЕКУЛЯРНЫЙ ВАКУУМНЫЙ НАСОС


RU (11) 2014510 (13) C1

(51) 5 F04D19/04 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 26.12.2007 - прекратил действие 

--------------------------------------------------------------------------------

(21) Заявка: 5027075/29 
(22) Дата подачи заявки: 1991.11.28 
(45) Опубликовано: 1994.06.15 
(71) Заявитель(и): Харламов Борис Васильевич 
(72) Автор(ы): Харламов Борис Васильевич 
(73) Патентообладатель(и): Харламов Борис Васильевич 

(54) ТУРБОМОЛЕКУЛЯРНЫЙ ВАКУУМНЫЙ НАСОС 

Сущность изобретения: газодинамическое уплотнение образовано поверхностью цилиндрического статора, покрытой фторопластом с многочисленными цилиндрическими канавками, образующими зону уплотнения, и иногозаходными спиральными канавками, выполненными на поверхности ротора, обращенной к цилиндрическому статору, имеющими уменьшающуюся в сторону нагнетания глубину и направленными в сторону, противоположную направлению вращения ротора. Вторая ступень выполнена в виде вихревой ступени, содержащей статорные и роторные диски. Статорные диски выполнены плоскими и покрыты фторопластовым уплотнением с концентрическими канавками, образующими лабиринтное уплотнение. Роторные диски содержат по контуру диска лопатки, наклонные в сторону вращения. На поверхности дисков выполнены каналы, наклонные в сторону, противоположную вращению диска со стороны входа газа, и в сторону вращения со стороны выхода газа. 3 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к вакуумной технике и может быть использовано в турбомолекулярных вакуумных насосах (ТМН).

Известен ТМН, содержащий опорный узел, турбомолекулярную часть первой ступени насоса, непосредственно соединенную с ней молекулярную часть второй ступени насоса и газодинамическое уплотнение третьей ступени насоса, вход которого связан каналом с второй ступенью насоса, а выход - с атмосферой. Получение безмасляного вакуума с помощью этого ТМН заключается в том что вакуум создают путем получения разрежения последовательно на выходах второй и первой ступенях откачки с обязательным применением безмасляного опорного узла, например, на газовой опоре и при отключенном форвакуумном насосе после выхода ТМН на режим.

Недостатком данного технического решения является обязательное применение безмасляного опорного узла, чрезвычайно сложной и трудоемкий процесс изготовления опорного узла и высокие требования к его эксплуатации в части очистки воздуха для питания.

Наиболее близким к предлагаемому устройству является трехступенчатый ТМН, содержащий корпус с входным патрубком, расположенный по оси корпуса цилиндрический статор и закрепленный на валу, снабженном опорным узлом и приводом, ротор, охватывающий цилиндрический статор и образующий с корпусом и статором последовательно расположенные турбомолекулярную ступень, вторую ступень и газодинамическое уплотнение, при этом газодинамическое уплотнение образовано поверхностью цилиндрического статора и многозаходными спиральными канавками, выполненными на поверхности ротора, обращенной к цилиндрическому статору, имеющими уменьшающуюся в сторону нагнетания глубину и направленными в сторону, противоположную направлению вращения ротора.

Цель изобретения - повышение эффективности путем улучшения откачных характеристик.

Указанная цель достигается тем, что вторая ступень выполнена в виде вихревой ступени, включающей статорные и роторные диски, при этом статорные диски выполнены плоскими и покрыты фторопластовым уплотнителем, а роторные диски содержат по контуру диска лопатки, наклонные в сторону вращения, причем на поверхности выполнены каналы, наклонные сторону, противоположную вращению диска со стороны входа газа и в сторону вращения со стороны выхода газа.

Это позволяет значительно повысить степень сжатия откачиваемой среды перед входом в газодинамическое уплотнение, где происходит переходный процесс откачиваемой среды от молекулярного состояния к вязкостному, позволяющему осуществить выброс в атмосферу и дополнительно обеспечивает пригодность насоса для откачки сильно агрессивных сред.

Достигаемый результат обусловлен тем, что улучшаются откачные характеристики и исключается возможность попадания углеводородов и пылевых частиц в откачиваемый объем, а введение вихревой ступени откачки с повышенной степенью сжатия позволяет осуществить выхлоп в атмосферу и увеличить пропускную способность третьей ступени откачки, ее эффективность, что, в свою очередь, позволяет ТМН работать без форвакуумной откачки и использовать насос для откачки сильно агрессивных сред, а размещение опорного узла и привода за третьей ступенью позволяет работать в обычных атмосферных условиях, что улучшает их охлаждение и позволяет применять электродвигатель с повышенным напряжением питания.

На фиг. 1 приведен продольный разрез части ТМН; на фиг. 2 - узел I на фиг. 1; на фиг. 3 - узел II на фиг. 1.

Турбомолекулярный вакуумный насос содержит корпус 1 с входным патрубком 2, расположенный на оси корпуса 1 цилиндрический статор 3 и закрепленный на валу 4, снабженном опорным узлом 5 и приводом 6, ротор 7, охватывающий цилиндрический статор 3 и образующий с корпусом 1 и статором 3 последовательно расположенные турбомолекулярную ступень, вторую ступень и газодинамическое уплотнение, при этом последнее образовано поверхностью статора 3 и многозаходными спиральными канавками, выполненными на поверхности ротора 7, обращенной к статору 3, имеющими уменьшающуюся в сторону нагнетания глубину и направленными в сторону, противоположную направлению вращения ротора. Вторая ступень (см. фиг. 1) выполнена в виде вихревой ступени (см. фиг. 3), включающей статорные 8 и роторные диски 9, при этом диски 8 выполнены плоскими и покрыты фторопластовым уплотнителем 10, а диски 9 содержат по контуру диска лопатки 11, наклонные в сторону вращения, причем на поверхности дисков 9 выполнены каналы 12, наклонные в сторону, противоположную вращению диска со стороны входа газа, и в сторону вращения со стороны выхода газа. Это позволяет значительно повысить степень сжатия откачиваемой среды перед входом в газодинамическое уплотнение 1 (см. фиг. 1 и 3), где происходит переходный процесс откачиваемой среды от молекулярного состояния к вязкостному, позволяющему осуществить выброс в атмосферу, а также использовать насос для откачки сильно агрессивных сред.

Насос работает следующим образом.

Газ из откачиваемого объема поступает в корпус 1 через входной патрубок 2 и, проходя последовательно через турбомолекулярную и вихревую ступень с канавками 12 и лопатками 11, поступает в третью ступень откачки с газодинамическим уплотнителем и нагнетается преимущественно в атмосферу. Фторопластовый уплотнитель 10 перекрывает зазор между статором 3 и ротором 7, а также между плоскими поверхностями дисков 8 и 9 в вихревой ступени откачки, препятствуя обратным перетечкам со стороны нагнетания на сторону всасывания, что позволяет улучшить откачные характеристики насоса. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



ТУРБОМОЛЕКУЛЯРНЫЙ ВАКУУМНЫЙ НАСОС, содержащий корпус с входным патрубком, расположенный по оси корпуса цилиндрический статор и закрепленный на валу, снабженном опорным узлом и приводом, ротор, охватывающий цилиндрический статор и образующий с корпусом и статором последовательно расположенные турбомолекулярную ступень, вторую ступень и газодинамическое уплотнение, отличающийся тем, что газодинамическое уплотнение образовано поверхностью цилиндрического статора, покрытой фторопластом с многочисленными цилиндрическими канавками, образующими зону уплотнения, и многозаходными спиральными канавками, выполненными на поверхности ротора, обращенной к цилиндрическому статору, имеющими уменьшающуюся в сторону нагнетания глубину и напрвленными в сторону, противоположную направлению вращения ротора, вторая ступень выполнена в виде вихревой ступени, включающей статорные и роторные диски, статорные диски выполнены плоскими фторопластовыми уплотнителем с концентрическими канавками, образующими лабиринтное уплотнение, а роторные диски содержат по контуру диска лопатки, наклонные в сторону вращения, причем на поверхности дисков выполнены каналы, наклонные в сторону, противоположную вращению диска со стороны входа газа, и в сторону вращения со стороны выхода газа.