ТУРБОМОЛЕКУЛЯРНЫЙ ВАКУУМНЫЙ НАСОС

ТУРБОМОЛЕКУЛЯРНЫЙ ВАКУУМНЫЙ НАСОС


RU (11) 2014510 (13) C1

(51) 5 F04D19/04 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 26.12.2007 - прекратил действие 

--------------------------------------------------------------------------------

(21) Заявка: 5027075/29 
(22) Дата подачи заявки: 1991.11.28 
(45) Опубликовано: 1994.06.15 
(71) Заявитель(и): Харламов Борис Васильевич 
(72) Автор(ы): Харламов Борис Васильевич 
(73) Патентообладатель(и): Харламов Борис Васильевич 

(54) ТУРБОМОЛЕКУЛЯРНЫЙ ВАКУУМНЫЙ НАСОС 

Сущность изобретения: газодинамическое уплотнение образовано поверхностью цилиндрического статора, покрытой фторопластом с многочисленными цилиндрическими канавками, образующими зону уплотнения, и иногозаходными спиральными канавками, выполненными на поверхности ротора, обращенной к цилиндрическому статору, имеющими уменьшающуюся в сторону нагнетания глубину и направленными в сторону, противоположную направлению вращения ротора. Вторая ступень выполнена в виде вихревой ступени, содержащей статорные и роторные диски. Статорные диски выполнены плоскими и покрыты фторопластовым уплотнением с концентрическими канавками, образующими лабиринтное уплотнение. Роторные диски содержат по контуру диска лопатки, наклонные в сторону вращения. На поверхности дисков выполнены каналы, наклонные в сторону, противоположную вращению диска со стороны входа газа, и в сторону вращения со стороны выхода газа. 3 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к вакуумной технике и может быть использовано в турбомолекулярных вакуумных насосах (ТМН).

Известен ТМН, содержащий опорный узел, турбомолекулярную часть первой ступени насоса, непосредственно соединенную с ней молекулярную часть второй ступени насоса и газодинамическое уплотнение третьей ступени насоса, вход которого связан каналом с второй ступенью насоса, а выход - с атмосферой. Получение безмасляного вакуума с помощью этого ТМН заключается в том что вакуум создают путем получения разрежения последовательно на выходах второй и первой ступенях откачки с обязательным применением безмасляного опорного узла, например, на газовой опоре и при отключенном форвакуумном насосе после выхода ТМН на режим.

Недостатком данного технического решения является обязательное применение безмасляного опорного узла, чрезвычайно сложной и трудоемкий процесс изготовления опорного узла и высокие требования к его эксплуатации в части очистки воздуха для питания.

Наиболее близким к предлагаемому устройству является трехступенчатый ТМН, содержащий корпус с входным патрубком, расположенный по оси корпуса цилиндрический статор и закрепленный на валу, снабженном опорным узлом и приводом, ротор, охватывающий цилиндрический статор и образующий с корпусом и статором последовательно расположенные турбомолекулярную ступень, вторую ступень и газодинамическое уплотнение, при этом газодинамическое уплотнение образовано поверхностью цилиндрического статора и многозаходными спиральными канавками, выполненными на поверхности ротора, обращенной к цилиндрическому статору, имеющими уменьшающуюся в сторону нагнетания глубину и направленными в сторону, противоположную направлению вращения ротора.

Цель изобретения - повышение эффективности путем улучшения откачных характеристик.

Указанная цель достигается тем, что вторая ступень выполнена в виде вихревой ступени, включающей статорные и роторные диски, при этом статорные диски выполнены плоскими и покрыты фторопластовым уплотнителем, а роторные диски содержат по контуру диска лопатки, наклонные в сторону вращения, причем на поверхности выполнены каналы, наклонные сторону, противоположную вращению диска со стороны входа газа и в сторону вращения со стороны выхода газа.

Это позволяет значительно повысить степень сжатия откачиваемой среды перед входом в газодинамическое уплотнение, где происходит переходный процесс откачиваемой среды от молекулярного состояния к вязкостному, позволяющему осуществить выброс в атмосферу и дополнительно обеспечивает пригодность насоса для откачки сильно агрессивных сред.

Достигаемый результат обусловлен тем, что улучшаются откачные характеристики и исключается возможность попадания углеводородов и пылевых частиц в откачиваемый объем, а введение вихревой ступени откачки с повышенной степенью сжатия позволяет осуществить выхлоп в атмосферу и увеличить пропускную способность третьей ступени откачки, ее эффективность, что, в свою очередь, позволяет ТМН работать без форвакуумной откачки и использовать насос для откачки сильно агрессивных сред, а размещение опорного узла и привода за третьей ступенью позволяет работать в обычных атмосферных условиях, что улучшает их охлаждение и позволяет применять электродвигатель с повышенным напряжением питания.

На фиг. 1 приведен продольный разрез части ТМН; на фиг. 2 - узел I на фиг. 1; на фиг. 3 - узел II на фиг. 1.

Турбомолекулярный вакуумный насос содержит корпус 1 с входным патрубком 2, расположенный на оси корпуса 1 цилиндрический статор 3 и закрепленный на валу 4, снабженном опорным узлом 5 и приводом 6, ротор 7, охватывающий цилиндрический статор 3 и образующий с корпусом 1 и статором 3 последовательно расположенные турбомолекулярную ступень, вторую ступень и газодинамическое уплотнение, при этом последнее образовано поверхностью статора 3 и многозаходными спиральными канавками, выполненными на поверхности ротора 7, обращенной к статору 3, имеющими уменьшающуюся в сторону нагнетания глубину и направленными в сторону, противоположную направлению вращения ротора. Вторая ступень (см. фиг. 1) выполнена в виде вихревой ступени (см. фиг. 3), включающей статорные 8 и роторные диски 9, при этом диски 8 выполнены плоскими и покрыты фторопластовым уплотнителем 10, а диски 9 содержат по контуру диска лопатки 11, наклонные в сторону вращения, причем на поверхности дисков 9 выполнены каналы 12, наклонные в сторону, противоположную вращению диска со стороны входа газа, и в сторону вращения со стороны выхода газа. Это позволяет значительно повысить степень сжатия откачиваемой среды перед входом в газодинамическое уплотнение 1 (см. фиг. 1 и 3), где происходит переходный процесс откачиваемой среды от молекулярного состояния к вязкостному, позволяющему осуществить выброс в атмосферу, а также использовать насос для откачки сильно агрессивных сред.

Насос работает следующим образом.

Газ из откачиваемого объема поступает в корпус 1 через входной патрубок 2 и, проходя последовательно через турбомолекулярную и вихревую ступень с канавками 12 и лопатками 11, поступает в третью ступень откачки с газодинамическим уплотнителем и нагнетается преимущественно в атмосферу. Фторопластовый уплотнитель 10 перекрывает зазор между статором 3 и ротором 7, а также между плоскими поверхностями дисков 8 и 9 в вихревой ступени откачки, препятствуя обратным перетечкам со стороны нагнетания на сторону всасывания, что позволяет улучшить откачные характеристики насоса. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



ТУРБОМОЛЕКУЛЯРНЫЙ ВАКУУМНЫЙ НАСОС, содержащий корпус с входным патрубком, расположенный по оси корпуса цилиндрический статор и закрепленный на валу, снабженном опорным узлом и приводом, ротор, охватывающий цилиндрический статор и образующий с корпусом и статором последовательно расположенные турбомолекулярную ступень, вторую ступень и газодинамическое уплотнение, отличающийся тем, что газодинамическое уплотнение образовано поверхностью цилиндрического статора, покрытой фторопластом с многочисленными цилиндрическими канавками, образующими зону уплотнения, и многозаходными спиральными канавками, выполненными на поверхности ротора, обращенной к цилиндрическому статору, имеющими уменьшающуюся в сторону нагнетания глубину и напрвленными в сторону, противоположную направлению вращения ротора, вторая ступень выполнена в виде вихревой ступени, включающей статорные и роторные диски, статорные диски выполнены плоскими фторопластовыми уплотнителем с концентрическими канавками, образующими лабиринтное уплотнение, а роторные диски содержат по контуру диска лопатки, наклонные в сторону вращения, причем на поверхности дисков выполнены каналы, наклонные в сторону, противоположную вращению диска со стороны входа газа, и в сторону вращения со стороны выхода газа.




ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал
Насосы и компрессорное оборудование






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+центробежный -насос".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "насос" будут найдены слова "насосы", "насосом" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("насос!").



Рейтинг@Mail.ru