ИНДУКТОР ЦИЛИНДРИЧЕСКОГО ЛИНЕЙНОГО ИНДУКЦИОННОГО НАСОСА

ИНДУКТОР ЦИЛИНДРИЧЕСКОГО ЛИНЕЙНОГО ИНДУКЦИОННОГО НАСОСА


RU (11) 2251197 (13) C1

(51) 7 H02K44/06, H02K41/025 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 26.12.2007 - действует 

--------------------------------------------------------------------------------

Документ: В формате PDF 
(21) Заявка: 2003126131/06 
(22) Дата подачи заявки: 2003.08.25 
(24) Дата начала отсчета срока действия патента: 2003.08.25 
(45) Опубликовано: 2005.04.27 
(56) Список документов, цитированных в отчете о поиске: SU 896722 A, 07.01.1982. SU 1144588 A1, 07.08.1991. SU 1194238 A1, 15.08.1991. SU 494835 A, 05.12.1975. 
(72) Автор(ы): Кириллов И.Р. (RU); Огородников А.П. (RU); Преслицкий Г.В. (RU) 
(73) Патентообладатель(и): Федеральное государственное унитарное предприятие Научно-исследовательский институт электрофизической аппаратуры им. Д.В. Ефремова (RU) 
Адрес для переписки: 196641, Санкт-Петербург, п. Металлострой, промзона "Металлострой", дорога на Металлострой, 3, ФГУП "НИИЭФА им. Д.В. Ефремова" 

(54) ИНДУКТОР ЦИЛИНДРИЧЕСКОГО ЛИНЕЙНОГО ИНДУКЦИОННОГО НАСОСА

Индуктор наоса предназначен для использования в МГД технике. Индуктор состоит из магнитопровода с пазами и трехфазной обмотки возбуждения в виде дисковых катушек, причем обмотка имеет число пар полюсов больше или равно трем и выполнена с четным числом пазов на полюс и фазу. В индукторе у концевых полюсов каждая фазная зона разделена на катушечные группы, по две катушки в группе, внутри которой катушки соединены параллельно, а катушечные группы внутри фазной зоны соединены последовательно; у остальных полюсов все катушки соединены последовательно. Изобретение обеспечивает повышение развиваемого давления и КПД. 3 ил.






ОПИСАНИЕ ИЗОБРЕТЕНИЯ


Изобретение относится к МГД технике. Оно может быть использовано в линейных индукционных электромагнитных насосах для перекачивания жидкометаллических теплоносителей в реакторах на быстрых нейтронах, а также в других установках для технологических целей.

Известны цилиндрические линейные индукционные насосы [1], основными узлами которых являются индуктор, содержащий внешний магнитопровод, набранный из листовой электротехнической стали, с обмоткой, уложенной в пазы внешнего магнитопровода, внутренний магнитопровод и линейный канал кольцевого сечения, охватывающий внутренний магнитопровод. Трехфазная обмотка с постоянным числом витков в пазу по длине создает бегущее вдоль канала магнитное поле, при взаимодействии которого с индуктированными в жидком металле токами появляется электромагнитное усилие, обеспечивающее перемещение жидкого металла в канале насоса.

Недостатком насосов с такими индукторами является повышенный расход электроэнергии, обусловленный влиянием продольного концевого эффекта, и низкий к.п.д.

Известно, что для ослабления влияния продольного концевого эффекта в индукторах линейных индукционных насосах используют градацию линейной токовой нагрузки на концах индуктора по линейному закону в пределах полюсного деления или двух полюсных делений 2 или градацию ступенчатую в пределах фазной зоны на длине полюсного деления [2, 3].

Использование градации линейной токовой нагрузки по линейному закону на концах индуктора в пределах и 2 позволяет повысить эффективность насоса, но увеличивает трудоемкость и стоимость его изготовления, так как требуется дополнительная технологическая оснастка для изготовления катушек с переменным числом витков.

Известен также индуктор линейной индукционной машины [4], содержащий магнитопровод с индуктирующими участками, в пазах которого уложена трехфазная обмотка возбуждения с целым числом полюсов, имеющая постоянное число витков в средней части и переменное в концевых частях. В таком индукторе градация линейной токовой нагрузки выполнена по линейному закону в пределах каждой фазной зоны по концам индуктора на длине полюсного деления и магнитопровод по концам имеет шунтирующие участки.

Недостатком указанной конструкции являются невысокие энергетические показатели, связанные со значительным влиянием продольного концевого эффекта, имеющего место в концевых шунтирующих зонах, и обусловленные наличием в них пульсирующих полей.

Кроме того, в индукционных насосах, в силу небольших скоростей движения жидкого металла при питании от сети промышленной частоты f=50 Гц, фазная зона состоит из небольшого числа пазов на полюс и фазу q=2 и вынесение градации в пределах фазной зоны при этих значениях q затруднено. Далее использование в обмотке катушек с переменным числом витков на концах увеличивает трудоемкость изготовления катушек и их стоимость, поскольку для изготовления и запечки катушек с переменным числом витков требуется дополнительная технологическая оснастка. 

Стоит задача повысить развиваемое давление и коэффициент полезного действия за счет уменьшения влияния продольного концевого эффекта, а также упростить технологию изготовления индуктора за счет использования обмотки с постоянным числом витков по всей длине индуктора и соответствующего соединения катушек в фазных зонах на крайних полюсных делениях.

Это достигается тем, что в известном индукторе цилиндрического линейного индукционного насоса, содержащем наружный магнитопровод с пазами, трехфазную обмотку возбуждения в виде дисковых катушек с постоянным числом проводников в каждом пазу при числе полюсов 2р3 и четном числе пазов на полюс и фазу q=2, 4, 6..., каждая фазная зона у полюсов на входе и выходе разделена на n=q/2 катушечных групп, по две катушки в группе, которые соединены параллельно между собой в группе, а катушечные группы внутри фазной зоны соединены последовательно, при этом у остальных полюсов все катушки в фазных зонах соединены последовательно.

Как показали расчетные и экспериментальные исследования характеристик цилиндрического линейного индукционного насоса с индуктором, у которого трехфазная обмотка выполнена с соединением катушек в фазных зонах на полюсных делениях на входе и выходе насоса в соответствии с предлагаемым техническим решением, это позволяет повысить развиваемое электромагнитное давление и к.п.д. насоса до 6% по сравнению с электромагнитным насосом, имеющим такую же обмотку возбуждения, но без соединения катушек и фазных зон на концевых полюсах согласно предлагаемому техническому решению.

На фиг.1 изображен продольный разрез индуктора цилиндрического линейного индукционного насоса; на фиг.2 показана схема соединения обмотки для индуктора с числом пазов на полюс и фазу q=2, а на фиг.3 - схема соединения индуктора с числом пазов на полюс и фазу q=4.

Индуктор цилиндрического линейного индукционного насоса (фиг.1) содержит наружный магнитопровод 1, в пазах которого уложена трехфазная обмотка 2. Имеется внутренний магнитопровод 3, наружная тонкостенная обечайка 4, внутренняя тонкостенная обечайка 5, которые образуют кольцевой канал 6.

На фиг.2 показана схема соединения обмотки индуктора с числом полюсов 2р=6 и числом пазов на полюс и фазу q=2, а на фиг.3 - схема соединения с числом полюсов 2р=4 и числом пазов на полюс и фазу q=4. Фазные зоны A; Z; В; X; С; Y состоят из двух (фиг.2) и четырех (фиг.3) катушек, катушки у концевых полюсных делений 1 и 6 (фиг.2) и 1 и 3 (фиг.3) в фазных зонах разделены на n=q/2=1 (фиг.2) и n=q/2=2 (фиг.3) катушечных групп по две катушки в каждой группе. Катушки внутри группы соединены между собой параллельно, а внутри фазной зоны катушечные группы (фиг.3) - последовательно у концевых полюсных делений, а у других полюсных делений 2- 5 (фиг.2) и 3 (фиг.3) катушки в фазных зонах соединены последовательно. 

При включении напряжения на обмотку 2 в кольцевом канале 6 между наружным магнитопроводом 1 и внутренним магнитопроводом 3 образуется бегущее магнитное поле, под воздействием которого в жидком металле в кольцевом канале 6 возникают кольцевые токи, при взаимодействии этих токов с приложенным магнитным полем образуется осевая электромагнитная сила, перемещающая металл от входа к выходу.

При использовании предлагаемого технического решения в индукторе линейная токовая нагрузка уменьшена на концевых полюсных делениях в 2 раза по сравнению с линейной токовой нагрузкой на остальных полюсных делениях. Благодаря этому продольный концевой эффект, связанный с разомкнутостью магнитопровода и со входом и выходом рабочего тела в зону магнитного поля, существенно снижается, поэтому у насоса с индуктором, выполненным в соответствии с предлагаемым техническим решением, увеличивается развиваемое электромагнитное давление и повышается коэффициент полезного действия по сравнению с электромагнитным насосом, имеющим индуктор с традиционной обмоткой. 

Предлагаемая обмотка обеспечивает более равномерное распределение потребляемого тока по фазам и повышение эффективности насоса при больших магнитных числах Рейнольдса Rm=/ 2, где - магнитная проницаемость перекачиваемой среды, - электропроводность, =2f - круговая частота, - полюсное деление, =/. 

Известно, что при работе насоса с магнитными числами Рейнольдса Rm>1 с традиционной обмоткой [5] имеет место ослабление магнитного поля на входе из-за влияния продольного концевого эффекта. В результате потокосцепление и ЭДС в катушках, расположенных на входе в зоне ослабленного поля, уменьшается по сравнению с остальными катушками, что приводит, при постоянном напряжении на насосе, к увеличению тока, потребляемого насосом, и неравномерному распределению его по фазам. Если линейная токовая нагрузка выбрана на уровне предельной, то указанное увеличение тока приведет к уменьшению габаритной мощности машины и развиваемого давления за счет снижения линейной токовой нагрузки во избежание перегрева обмотки. Использование индуктора с обмоткой согласно предлагаемому техническому решению позволяет избежать увеличения тока на входных катушках, так как магнитное поле на входе нарастает постепенно и линейная токовая нагрузка уменьшена в два раза на входном и выходном полюсных делениях. Это позволяет эксплуатировать насос при линейной токовой нагрузке, выбранной на уровне допустимой по тепловым соображениям.

Использование в индукционном насосе индуктора с обмоткой в соответствии с предлагаемым техническим решением позволяет упростить технологию изготовления насоса и уменьшить стоимость его изготовления, так как не требуется разрабатывать и изготавливать технологическую оснастку, необходимую при изготовлении катушек с переменным числом витков.

Источники информации 

1. В.А.Глухих, А.В.Тананаев, И.Р.Кириллов. Магнитная гидродинамика в ядерной энергетике. Москва, Энергоиздат, 1987.

2. А.М.Андреев и др. Исследование продольного краевого эффекта на модели цилиндрического линейного насоса. Магнитная гидродинамика, 1969, №3, с.97-100. 

3. H.Araseki, Igor R.Kirillov, Gennady V.Preslisky, Anatoly P.Ogorodnikov. Double-supply-frequency pressure pulsation in annular linear induction pump, part II: reduction of pulsation by linear winding grading at both stator ends. Nuclear Engineering and Design, 200 (2000), 397-406.

4. Авторское свидетельство СССР №896722, кл. Н 02 К 41/025, заявлено 24.12.79 (прототип). Опубликовано БИ 1-82, стр.242.

5. А.М.Андреев, Б.Г.Карасев, И.Р.Кириллов, А.П.Огородников, В.П.Остапенко, Г.Т.Семиков. Результаты экспериментального исследования цилиндрического линейного индукционного насоса ЦЛИН-5700. Препринт А-0345, НИИЭФА, Ленинград, 1977.




ФОРМУЛА ИЗОБРЕТЕНИЯ


Индуктор цилиндрического линейного индукционного насоса, содержащий наружный магнитопровод с пазами, трехфазную обмотку возбуждения в виде дисковых катушек с постоянным числом проводников в каждом пазу, отличающийся тем, что при числе полюсов 2р3 и четном числе пазов на полюс и фазу q=2, 4, 6... каждая фазная зона у полюсов на входе и выходе разделена на n=q/2 катушечных групп, по две катушки в группе, которые соединены параллельно между собой в группе, а катушечные группы внутри фазной зоны соединены последовательно, при этом у остальных полюсов все катушки в фазных зонах соединены последовательно.








ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал
Насосы и компрессорное оборудование






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+центробежный -насос".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "насос" будут найдены слова "насосы", "насосом" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("насос!").



Рейтинг@Mail.ru