ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2027957

ТУРБОДЕТАНДЕР ВЫСОКОГО ДАВЛЕНИЯ

ТУРБОДЕТАНДЕР ВЫСОКОГО ДАВЛЕНИЯ

Имя изобретателя: Давыденков И.А., Давыдов А.Б., Юсупов П.П., Медведев А.Ф., Кибирев О.П.
Имя патентообладателя: Всесоюзный научно-исследовательский институт гелиевой техники
Адрес для переписки: 
Дата начала действия патента: 27.08.1990

Использование: криогенная и холодильная техника. Сущность изобретения: турбодетандер высокого давления содержит силовой корпус 1, размещенный в последнем корпус ступени 3 с проточной частью 4, в котором в зоне лабиринтного уплотнения установлен радиальный проставок 23 из теплоизоляционного материала. Снаружи корпуса ступени 3 в зоне проточной части 4 установлена цилиндрическая втулка 19. Узел 5 подвески ротора снабжен стабилизирующей гильзой 14. Подшипники 11, 12 выполнены по типу радиально-упорных подшипников скольжения и закреплены в стабилизирующей гильзе 14, при этом их радиальная часть разделена кольцевой полостью, соединенной каналом с линией отвода масла, на две секции. Предусмотрено выполнение цилиндрической втулки 19 с уплотнительными гребнями, а лабиринтного уплотнения трехсекционным с камерами подвода и отвода теплого газа между секциями. Радиальный проставок 23 и цилиндрическая втулка 19 могут быть выполнены из фторопласта.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к энергетике, а именно к низкотемпературным турбодетандерам высокого давления, применяемым в криогенной технике для понижения энтальпии рабочего газа, конкретно к водородным турбодетандерам.

Известны одноступенчатые и двухступенчатые воздушные и азотные турбодетандеры высокого давления [1], применяемые в воздухоразделительных установках высокого давления и ожижителях азота, содержащие корпус с размещенными в нем проточной частью с направляющим аппаратом и рабочим колесом на валу, установленном в подшипниках.

Недостатком этих машин является низкая степень расширения (только до d = 33).

Известен также турбохолодильник [2], содержащий силовой корпус, размещенные в нем ротор с валом и рабочими колесами и узел подвески ротора с подшипниками и лабиринтными уплотнениями.

Недостатками этой турбомашины являются возможность замерзания масла в результате интенсивного охлаждения за счет холода, передаваемого из рабочей зоны, приводящая к неработоспособности машины; температурная деформация, приводящая к искажению и выборке заданных рабочих зазоров между вращающимися и неподвижными деталями, что приводит к недопустимому увеличению вибрации ротора и, как следствие, к аварии; большие холодные утечки рабочего газа, вызывающие интенсивное охлаждение корпуса, большие потери холода, снижающее КПД турбомашины.

Целью изобретения является повышение эффективности и надежности турбодетандера высокого давления.

Цель достигается тем, что турбодетандер высокого давления, содержащий силовой корпус и размещенные в нем ротор с валом и рабочим колесом, узел подвески ротора с подшипниками и лабиринтным уплотнением, снабжен корпусом ступени, в котором в зоне лабиринтного уплотнения установлен радиальный проставок из теплоизоляционного материала, а снаружи корпуса в зоне проточной части расположена цилиндрическая втулка, перекрывающая зону лабиринтного уплотнения; радиально-упорные подшипники скольжения узла подвески ротора закреплены в стабилизирующей гильзе, радиальная часть подшипников разделена кольцевой полостью, соединенной каналом с линией отвода масла, на две секции с отношением осевой длины секции L к диаметру цапфы вала d: 0,5@ L/d @ 0,6; лабиринтное уплотнение выполнено трехсекционным с камерами подвода и отвода теплого газа между секциями.

Цилиндрическая втулка может быть выполнена с уплотнительными гребнями, а в качестве материала как цилиндрической втулки, так и радиального проставка может служить, например, фторопласт.

Благодаря устранению потерь холода в проточной части, уменьшению потерь через лабиринтные уплотнения и повышению устойчивости вращения ротора обеспечивается достаточная эффективность и надежность турбодетандера, позволяющие на практике создать работоспособную машину высокого давления для расширения низкотемпературного газа, например водорода.

турбодетандер высокого давления (ступень, продольный разрез)

На фиг.1 изображен турбодетандер высокого давления (ступень, продольный разрез); на фиг.2 - двухсекционный подшипник скольжения; на фиг.3 - сечение А-А на фиг.2; на фиг.4 - лабиринтное уплотнение проточной части турбодетандера; на фиг.5 - конструктивная схема турбодетандера высокого давления; на фиг. 6 - график зависимости относительного КПД турбодетандера от числа ступеней.

Турбодетандер высокого давления (ступень) состоит из силового корпуса 1 с полостью 2 высокого давления, в котором размещен корпус 3 ступени турбодетандера с деталями проточной части 4 и узла 5 подвески ротора.

Полость 2 подачи газа высокого давления отделена от полости 6 низкого давления, служащей для отвода расширенного газа из ступени, уплотняющей втулкой 7, которая изготовлена из материала с коэффициентом температурной деформации большим, чем у материала силового корпуса 1, для обеспечения надежного уплотнения при охлаждении турбодетандера.

Проточная часть 4 состоит из направляющего аппарата 8 и рабочего колеса 9. Рабочее колесо 9 закреплено на консоли вала 10, который совместно с подшипниками 11 и 12 и тормозной втулкой 13 представляет узел 5 подвески ротора.

Узел 5 подвески ротора закреплен в специальной стабилизирующей гильзе 14, которая предотвращает передачу температурных деформаций корпуса 3 турбинной ступени на детали ходовой части и тем самым стабилизирует их взаимное расположение и заданную форму рабочих поверхностей и зазоров, что обеспечивает механическую надежность работы при охлаждении корпуса.

В корпусе 3 ступени турбодетандера выполнены проточки 15 и 16 со штуцерами 17 и 18 соответственно для подвода и отвода масла к подшипникам 11 и 12 и тормозной втулке 13.

Для уменьшения деформации корпуса 3 ступени турбодетандера от охлаждения конвективным теплообменом зазор между силовым корпусом 1 и корпусом 3 ступени турбодетандера заполнен цилиндрической втулкой 19.

На валу 10 рабочего колеса 9 установлена втулка 20 лабиринтного уплотнения. Подшипник 11 дополнительно отделен от полости лабиринта масляной ловушкой 21.

Корпус 3 ступени турбодетандера выполнен таким образом, что детали проточной части 4 отделены от деталей ходовой части турбодетандера (узла 5 подвески ротора) тонкой цилиндрической перемычкой 22 и радиальным проставком 23 из теплоизоляционного материала, что является существенным препятствием теплообмену по металлу корпуса 3 и исключает конвекционный перенос холода от проточной части 4 к подшипникам 11. Цилиндрическая втулка 19 может быть выполнена с уплотнительными гребнями, а в качестве материала цилиндрической втулки 19 и радиального проставка 23 может быть использован, например, фторопласт.

Подшипники 11 и 12 - гидродинамические радиально-упорные подшипники скольжения с масляной смазкой (фиг.2 и 3).

Радиальные части подшипников 11 и 12 разделены на две секции 24 и 25, между которыми имеется кольцевая полость 26 с каналом 27, служащим для отвода отработанного масла из подшипников 11 и 12.

Каждая секция 24 и 25 имеет три, расположенные под углом 120о одна к другой, месяцеобразные камеры 28 и радиальные отверстия 29 для подачи масла под определенным давлением. Камеры 28 отделены друг от друга в радиальном направлении перемычками 30, выход масла из них осуществляется лишь в зазор, образуемый внутренней поверхностью радиальной части подшипника и наружной поверхностью цапфы вращающегося в нем вала 10 (фиг.1, 2, 3).

Отношение осевой длины L камер 24 и 25 к диаметру цапфы вала d, равному диаметру камер 24 и 25, лежит в пределах 0,5-0,6, т.е. 0,5 @ L/d @ 0,6.

При таком отношении L/d относительная частота процессии ротора W , определяемая отношением частоты процессии к собственно частоте вращения ротора, снижается до оптимальной (по условиям устойчивости) величины порядка 0,15-0,20.

Проведенные с использованием ЭВМ расчеты, подтвержденные экспериментальными данными, показывают, что оптимальное значение относительной частоты W = 0,15-0,2 обеспечивается при относительной длине опорной части радиального подшипника L/d, равной 0,5-0,6. Устройство сдвоенного подшипника с разделяющей канавкой для сброса масла позволяет увеличить жесткость подшипника и благодаря этому дополнительно повысить виброустойчивость подшипника. При этом достигается интенсивный отвод тепла гидродинамического трения при супервысокой частоте вращения ротора.

двухсекционный подшипник скольжения
лабиринтное уплотнение проточной части турбодетандера
конструктивная схема турбодетандера высокого давления
график зависимости относительного КПД турбодетандера от числа ступеней.

Втулка 20 лабиринтного уплотнения (фиг.5) состоит из секций 31, 32 и 33. Между секциями 31 и 32 имеется кольцевая камера 34 для подачи теплого рабочего газа (водорода), создающая затвор для холодной утечки из полости 35 проточной части 4. Между секциями 32 и 33 расположена кольцевая камера 36, служащая для отвода смеси теплого газа с небольшим количеством холодной утечки. Камера 37 между секцией 33 с лабиринтным уплотнением и втулкой 20 служит для улавливания масла.

На фиг.5 показан пример конкретного выполнения многоступенчатого турбодетандера, включающего, например, четыре ступени. Каждая ступень турбодетандера представляет собой самостоятельную турбину 38, 39, 40 и 41 с проточными частями 4, каждая из которых закреплена в силовом наружном корпусе 1. Силовые корпуса 1 являются неотъемлемой частью теплоизоляционного кожуха 42, служащего для уменьшения теплопритоков к расширяемому газу из окружающей среды и имеющего коммуникацию 43 для подвода рабочего газа высокого давления в первую ступень (турбина 38), перепускную коммуникацию 44 между ступенями и коммуникацию 45 отвода расширенного и охлажденного газа.

На фиг.6 показан график зависимости относительного эффективного КПД от числа ступеней расширения Z для степени понижения давления от 60 до 100, которая получена в результате проведенных оптимизационных расчетов с учетом вышеперечисленных специфических условий расширения водорода высокого давления с начальной температурой порядка минус 200оС. Оптимальное число ступеней составляет 3-4.

Турбодетандер высокого давления работает следующим образом.

Рабочий газ высокого давления, например водород (фиг.5), подводится в I-ую ступень (турбину 38) турбодетандера по коммуникации 43, частично расширяется в проточной части 4 и далее переходит по коммуникации 44 из ступени в ступень поочередно во II (39), III (40) и IV (41) ступени, чем обеспечивается последовательное многоступенчатое расширение. Из последней ступени (туpбины 41) расширенный и охлажденный газ отводится по коммуникации 45 потребителю, например, в ожижитель водорода (не показан).

Для обеспечения работы ходовой части от автономного агрегата смазки (не показан) к каждой из ступеней (турбинам 38, 39, 40 и 41) подводится масло, которое затем через штуцера 17 и внутренний канал (проточку 15) (фиг.1) подается к подшипникам 11 и 12 и тормозной втулке 13. Отработанное масло проходит по каналу (проточке 16) и через штуцер 18 сливается из корпуса 3 по сливному трубопроводу обратно в агрегат смазки (не показан).

Изображенная на фиг. 2 и 3 конструкция гидродинамического подшипника скольжения обеспечивает более интенсивное по сравнению с демпфированием снижение самовозбуждения смазочного слоя подшипников. При этом существенно уменьшается угловая скорость дополнительного орбитального движения вала и, соответственно, уменьшается децентрирующая центробежная нагрузка на опоры. В результате возрастает виброустойчивость ротора.

Благодаря выбору оптимального числа ступеней турбодетандера, позволяющего обеспечить высокоэффективное расширение газа со степенью расширения d = 80-120, выбору компановки турбодетандера, а также сведению к минимуму теплопритоков по корпусу и валу, что, соответственно, ведет к уменьшению деформации корпуса и рабочих поверхностей подшипников, удалось решить задачу создания работоспособного турбодетандера высокого давления для расширения водорода.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. ТУРБОДЕТАНДЕР ВЫСОКОГО ДАВЛЕНИЯ, содержащий силовой корпус с проточной частью и размещенные в нем ротор с валом и рабочим колесом, узел подвески ротора с подшипниками, лабиринтным уплотнением и линией отвода масла, отличающийся тем, что, с целью повышения эффективности и надежности в работе, турбодетандер снабжен корпусом ступени, в котором в зоне лабиринтного уплотнения, установлен радиальный проставок из теплоизоляционного материала, снаружи корпуса ступени в зоне проточной части расположена цилиндрическая втулка, узел подвески ротора снабжен стабилизирующей гильзой, а подшипники выполнены по типу радиально-упорных подшипников скольжения и закреплены в стабилизирующей гильзе, при этом радиальная часть подшипников разделена кольцевой полостью, соединенной каналом с линией отвода масла, на две секции с отношением осевой длины секции к диаметру цапфы вала в соответствии с соотношением

0,5 @ L/d @ 0,6,

где L - осевая длина секции;

d - диаметр цапфы вала.

2. Турбодетандер по п.1, отличающийся тем, что цилиндрическая втулка выполнена с уплотнительными гребнями.

3. Турбодетандер по п.1, отличающийся тем, что радиальный проставок и цилиндрическая втулка выполнены из фторопласта.

4. Турбодетандер по п.1, отличающийся тем, что лабиринтное уплотнение выполнено трехсекционным с камерами подвода и отвода теплового газа между секциями.

Версия для печати


вверх