СПОСОБ ИЗГОТОВЛЕНИЯ ПОРИСТЫХ КЕРАМИЧЕСКИХ ГРАНУЛ ФОСФАТОВ КАЛЬЦИЯ

СПОСОБ ИЗГОТОВЛЕНИЯ ПОРИСТЫХ КЕРАМИЧЕСКИХ ГРАНУЛ ФОСФАТОВ КАЛЬЦИЯ


RU (11) 2299869 (13) C1

(51) МПК
C04B 35/447 (2006.01)
C04B 35/626 (2006.01)
A61L 27/12 (2006.01) 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 17.09.2007 - действует 

--------------------------------------------------------------------------------

Документ: В формате PDF 
(14) Дата публикации: 2007.05.27 
(21) Регистрационный номер заявки: 2005131363/03 
(22) Дата подачи заявки: 2005.10.12 
(24) Дата начала отсчета срока действия патента: 2005.10.12 
(45) Опубликовано: 2007.05.27 
(56) Аналоги изобретения: RU 2235061, C1 27.08.2004. RU 2149827 C1, 27.05.2000. US 5900254 A, 04.05.1999. US 4371484 A, 01.02.1983. JP 340952 A, 21.02.1991. 
(72) Имя изобретателя: Комлев Владимир Сергеевич (RU); Баринов Сергей Миронович (RU); Кубарев Олег Леонидович (RU) 
(73) Имя патентообладателя: Институт физико-химических проблем керамических материалов РАН (RU) 
(98) Адрес для переписки: 119361, Москва, ул. Озерная, 48, ИПК РАН 

(54) СПОСОБ ИЗГОТОВЛЕНИЯ ПОРИСТЫХ КЕРАМИЧЕСКИХ ГРАНУЛ ФОСФАТОВ КАЛЬЦИЯ
Пористые керамические гранулы на основе гидроксиапатита (ГА) могут быть использованы для заполнения костных дефектов в травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии. Технический результат изобретения - изготовление пористых сферических гранул с регулируемым размером и открытой пористостью 20-80 об.%. Способ изготовления гранул ГА заключается в предварительном синтезировании порошка фосфата кальция с соотношением Са/Р от 1,5 до 1,67, приготовлении суспензии с 10-%ным раствором желатина в соотношении 0,5-3 мл раствора желатина на 1 г порошка при температуре раствора 10-39°С. Суспензию ГА в водном растворе желатина диспергировали в нейтральной жидкой среде растительного масла, перемешивали смесь лопастной мешалкой со скоростью вращения 100-1500 об/мин. Под действием сил поверхностного натяжения образовывались гранулы сферической формы, которые промывали, сушили и подвергали термической обработке при температуре 900-1250°С. 1 табл.




ОПИСАНИЕ ИЗОБРЕТЕНИЯ


Изобретение относится к области керамических материалов для медицины, а именно травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии, и может использоваться для изготовления материалов, предназначенных для заполнения костных дефектов.

Керамические гранулы могут быть изготовлены разными способами, включая дробление блоков с последующей обкаткой, распылительной сушкой, закалкой в жидкости, гидротермальным синтезом, с получением гранул нерегулярной или близкой к сферической геометрии (1-4). Последняя предпочтительна как для предотвращения воспалительных реакций организма, так и для процесса остеоинтеграции (5, 6).

Известен метод, основанный на сфероидизации жидких капель за счет сил поверхностного натяжения, реализуемый при использовании смесей суспензии гидроксиапатита в растворе связующего (хитозана) и жидкого парафина (5). Способ позволяет получать пористые гранулы сферической формы, открытые поры в которых образуются за счет выжигания связки. Однако недостатки способа связаны с использованием расплавленного парафина и низкой пористостью получаемого материала.

Наиболее близким техническим решением является способ получения гранул на основе гидроксиапатита, заключающийся в смешивании гидроксида кальция и монозамещенного фосфата кальция, моногидрата в мольном соотношении Са/Р=1,67, добавлении к этой смеси водного раствора, содержащего гидрогель с концентрацией полимера 0,01-10,0 мас.%, перемешивании данных веществ при температуре 20-41°С при нейтральном значении рН6,8-7,2 с последующем фильтрованием и высушиванием осажденного конечного продукта в виде гранул при температуре 105-160°С (7).

Технический результат предлагаемого изобретения - способ изготовления сферических пористых керамических гранул с регулируемым размером и открытой пористостью от 20 до 80 об.%, размером от 50 до более чем 2000 мкм, состава от трехкальциевого фосфата (Са/Р=1,5) до гидроксиапатита (Са/Р=1,67).

Для достижения технического результата предлагается суспензионная технология, основанная на принципе несмешивающихся жидкостей с последующей термической обработкой. Порошок фосфата кальция от трехкальциевого фосфата до гидроксиапатита смешивают с раствором желатина в дистиллированной воде, который способствует сцеплению частиц порошка, при температуре раствора в интервале от 15 до 39°С. Концентрация суспензии варьируется от 0,5 до 3,0 мл 10%-ного раствора желатина на 1 г. порошка фосфата кальция. После этого суспензию вводят в диспергирующую среду, в качестве которой используется растительное масло, перемешивая лопастной мешалкой. Скорость перемешивания варьируется в пределах от 100 до 1500 об/мин, длительность перемешивания - от 5 до 60 мин. После отстаивания в течение 5 мин осадок в виде сферических гранул отфильтровывают, отмывают от масла этиловым спиртом, сушат и подвергают термической обработке при температурах от 900 до 1250°С с выдержкой при этих температурах от 30 до 300 мин.

Изобретение иллюстрируется следующими примерами.

Пример 1. 5 г порошка фосфата кальция с Са/Р=1,67 смешивают с 10%-ным раствором желатина в дистиллированной воде при температуре 20°С в соотношении порошок-жидкость 1 г/1,5 мл. Суспензию помещают в растительное масло при комнатной температуре, которое перемешивается лопастной мешалкой со скоростью 200 об/мин в течение 15 мин. После отстаивания, фильтрования, промывки и сушки гранулы подвергают термической обработке при температуре 1200°С с выдержкой 60 мин. Обожженные образцы имеют пористую структуру с содержанием открытых пор 39-41%, размером пор от 1 до 10 мкм. Размер получаемых гранул находится в пределах от 1000 до 10000 мкм.

Пример 2. 5 г. порошка фосфата кальция с Са/Р=1,60 смешивают с 10%-ным раствором желатина в дистиллированной воде при температуре 25°С в соотношении порошок-жидкость 1 г/2 мл. Суспензию помещают в растительное масло при комнатной температуре, которое перемешивается лопастной мешалкой со скоростью 500 об/мин в течение 15 мин. После отстаивания, фильтрования, промывки и сушки гранулы подвергают термической обработке при температуре 1200°С с выдержкой 60 мин. Обожженные образцы имеют пористую структуру с содержанием открытых пор 53-55%, размером пор от 1 до 10 мкм. Размер получаемых гранул находится в пределах от 600 до 7000 мкм.

Пример 3. 5 г порошка фосфата кальция с Са/Р=1,58 смешивают с 10%-ным раствором желатина в дистиллированной воде при температуре 35°С в соотношении порошок-жидкость 1 г/2,5 мл. Суспензию помещают в растительное масло при комнатной температуре, которое перемешивается лопастной мешалкой со скоростью 1000 об/мин в течение 30 мин. После отстаивания, фильтрования, промывки и сушки гранулы подвергают термической обработке при температуре 1000°С с выдержкой 60 мин. Обожженные образцы имеют пористую структуру с содержанием открытых пор 70-72%, размером пор от 0,5 до 15 мкм. Размер получаемых гранул находится в пределах от 50 до 900 мкм.

Пример 4. 5 г порошка фосфата кальция с Са/Р=1,50 смешивают с 10%-ным раствором желатина в дистиллированной воде при температуре 39°С в соотношении порошок-жидкость 1 г/3 мл. Суспензию помещают в растительное масло при комнатной температуре, которое перемешивается лопастной мешалкой со скоростью 1500 об/мин в течение 60 мин. После отстаивания, фильтрования, промывки и сушки гранулы подвергают термической обработке при температуре 900°С с выдержкой 60 мин. Обожженные образцы имеют пористую структуру с содержанием открытых пор 79-81%, размером пор от 0,5 до 15 мкм. Размер получаемых гранул находится в пределах от 50 до 400 мкм.

В таблице приведены характеристики гранул фосфатов кальция, получаемые при различных режимах проведения процесса. При температуре суспензии и дисперсионной среды ниже 15°С процесс гранулирования не реализуем из-за быстрого твердения суспензии, а при температуре выше 39°С - средний размер получаемых гранул составляет менее 50 мкм. При скорости перемешивания менее 100 об/мин происходит агломерирование гранул, а при скорости более 1500 об/мин - гранулы имеют средний размер менее 50 мкм. При температуре термообработки ниже 900°С не происходит спекания порошка фосфата кальция, а при температуре выше 1250°С резко снижается пористость.

Таблица

Характеристики гранул фосфатов кальция, получаемые при различных режимах проведения процесса. 
№ Температура раствора, °С Концентрация суспензии, мл/г Скорость перемешивания, об/мин Длительность перемешивания, мин Температура термообработки, °С Время выдержки, мин Размер гранул, мкм Открытая пористость, % 
1 10 1 200 20 - - - - 
2 10 2 500 40 - - - - 
3 10 3 1500 60 - - - - 
4 15 1 200 20 950 30 1500-1900 36 
5 15 2 500 40 1100 120 900-1300 53 
6 15 3 1500 60 1250 300 500-900 84 
7 20 1 200 20 950 30 1200-1600 36 
8 20 2 50 40 - - - - 
9 20 3 1500 60 1250 300 400-800 87 
10 25 1 200 20 950 30 800-1200 39 
11 25 2 500 40 1100 120 400-800 55 
12 25 3 1500 60 1250 300 200-500 83 
13 30 1 200 20 950 30 800-1200 33 
14 30 2 500 40 1100 120 300-700 54 
15 30 3 1500 60 1250 300 100-500 84 
16 35 1 200 20 950 30 300-700 33 
17 35 2 500 40 1100 120 100-500 52 
18 35 3 1500 60 1250 300 100-200 87 
19 39 1 200 40 950 120 200-600 37 
20 39 3 1500 40 1250 120 50-100 85 
21 45 1 500 60 1000 120 менее 50 37 
22 25 2 500 40 850 120 - - 
23 25 2 500 40 1300 120 400-800 23 


Источники информации, принятые во внимание

1. Williams D.F. The science and applications of biomaterials // Advances in Materials Technology Monitor. 1994. V.1, N2. P.1-38.

2. Орловский В.П., Суханова Г.Е., Ежова Ж.А., Родичева Г.В. Гидроксиапатитовая керамика // Ж. Всесоюзного хим. об-ва им. Д.И.Менделеева. 1991. Т.36, №6. С.683.

3. Hench L.L. Bioceramics and the future // Ceramics and Society. Ed. P.Vincenzini. Techna, Faenza, 1995. P.101-120.

4. De Bruijn J.D. Calcium phosphate biomaterials: bone-bonding and biodegradation properties. Thesis Leiden. - Haveka B.V., Alblasserdam, 1993. - 172 p.

5. Paul W., Sharma C.P. Development of porous spherical hydroxyapatite granules: application towards protein delivery // J.Mater. ScL: Mater. Med. 1999. V.10, N7. P.383-388.

6. Weinlander M., Plenk H., Jr., Adar F. and Holmes R. In: Bioceramics and the human body, Eds. A.Ravaglioli and A.Krajewski. Elsevier, London, 1992. P.317.

7. Крылова Е.А. Способ получения гидроксиапатитовых полисахаридных гранул. Патент RU 2235061, 2004.




ФОРМУЛА ИЗОБРЕТЕНИЯ


Способ изготовления пористых сферических гранул фосфата кальция, заключающийся в приготовлении суспензии предварительно синтезированного порошка фосфата кальция с соотношением Са/Р от 1,5 до 1,67 с 10%-ным раствором желатина в соотношении от 0,5 до 3,0 мл раствора желатина на 1 г порошка при температуре раствора от 10 до 39°С с получением суспензии порошка в растворе желатина, добавление этой суспензии в растительное масло, перемешивание смеси лопастной мешалкой со скоростью ее вращения от 100 до 1500 об/мин с последующей промывкой гранул и их термической обработкой при температуре от 900 до 1250°С.