КЛЕТОЧНАЯ ЛИНИЯ МЕЛАНОМЫ ЧЕЛОВЕКА mel P, ИСПОЛЬЗУЕМАЯ ДЛЯ ПОЛУЧЕНИЯ ПРОТИВООПУХОЛЕВЫХ ВАКЦИН

КЛЕТОЧНАЯ ЛИНИЯ МЕЛАНОМЫ ЧЕЛОВЕКА mel P, ИСПОЛЬЗУЕМАЯ ДЛЯ ПОЛУЧЕНИЯ ПРОТИВООПУХОЛЕВЫХ ВАКЦИН


RU (11) 2287575 (13) C1

(51) МПК
C12N 5/06 (2006.01)
A61K 35/12 (2006.01)
A61P 35/00 (2006.01) 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 10.08.2007 - действует 

--------------------------------------------------------------------------------

Документ: В формате PDF 
(14) Дата публикации: 2006.11.20 
(21) Регистрационный номер заявки: 2005111952/13 
(22) Дата подачи заявки: 2005.04.22 
(24) Дата начала отсчета срока действия патента: 2005.04.22 
(45) Опубликовано: 2006.11.20 
(56) Аналоги изобретения: US 2003082136 A1, 01.05.2003. RU 2192884 C1, 20.11.2002. US 5635188 A, 03.06.1997. WO 02053176 A3, 11.07.2002. JP 2002241314 A, 28.08.2002. 
(72) Имя изобретателя: Михайлова Ирина Николаевна (RU); Барышников Анатолий Юрьевич (RU); Морозова Лидия Федоровна (RU); Бурова Ольга Семеновна (RU); Демидов Лев Вадимович (RU); Палкина Татьяна Николаевна (RU); Козлов Алексей Михайлович (RU); Ларин Сергей Сергеевич (RU); Георгиев Георгий Павлович (RU); Ворожцов Георгий Николаевич (RU); Гнучев Николай Васильевич (RU) 
(73) Имя патентообладателя: Государственное учреждение Российский онкологический научный центр им. Н.Н. Блохина РАМН (RU) 
(98) Адрес для переписки: 115478, Москва, Каширское ш., 24, ГУ Российский онкологический научный центр им. Н.Н. Блохина РАМН, патентно-лицензионное отделение 

(54) КЛЕТОЧНАЯ ЛИНИЯ МЕЛАНОМЫ ЧЕЛОВЕКА mel P, ИСПОЛЬЗУЕМАЯ ДЛЯ ПОЛУЧЕНИЯ ПРОТИВООПУХОЛЕВЫХ ВАКЦИН
Изобретение относится к области биотехнологии и может найти применение в медицине для вакцинотерапии злокачественных новообразований. Полученная новая клеточная линия меланомы человека mel P обладает стабильными культуральными и морфологическими характеристиками, хранится в Специализированной коллекции клеточных культур института Цитологии РАН под номером РККК (П) 688Д. Клеточная линия характеризуется экспрессией меланомных (дифференцировочных) маркеров - CD63, НМВ45, и HMW, а также раково-тестикулярного маркера MAGE-3. Она может использоваться для создания противоопухолевых (цельноклеточных, генно-инженерных) вакцин, применяемых для лечения меланомы и других злокачественных новообразований. Использование данной линии клеток позволит получать новую эффективную противоопухолевую вакцину. 1 табл.




ОПИСАНИЕ ИЗОБРЕТЕНИЯ


Изобретение относится к области медицинской биотехнологии, в частности к получению клеточных линий, используемых для создания противоопухолевых вакцин.

Вакцинотерапия является одним из иммунологических подходов в лечении онкологических заболеваний. Принцип данного метода основан на индукции противоопухолевого иммунитета после введения в организм опухолевого антигена.

Центральным событием в процессе Т-клеточной иммунной реакции против опухолевых клеток является стимуляция распознавания Т-рецепторами антигенных детерминант, избирательно экспрессированных на опухолевых клетках. Опухолевые антигены, как правило, подвергаются процессингу перед их презентацией в контексте молекул гистосовместимости на клеточной поверхности. Различные категории опухолеассоциированных антигенов можно разделить на три главные группы: раково/тестикулярные антигены (MAGE, BAGE, FRAME, NY-ESO-1, HOM-MEL-40), дифференцировочные антигены меланоцитов (тирозиназа, Melan-A/MART-1, gp100, TRP-1, TRP-2) и мутированные антигены (MUM-1, CDK4, -катенин gp100-in4, p15, N-ацетилглюкозоаминтрансфераза V). С иммунологической точки зрения раково/тестикулярные антигены могут быть хорошими мишенями для иммунотерапии опухолей, поскольку в нормальных тканях эта группа антигенов (МАОЕ и PRAME) не экспрессируется, за исключением ткани яичек, которые недоступны для клеток иммунной системы из-за отсутствия их прямого контакта с иммунокомпетентными клетками [1] и отсутствия на них экспрессии HLA антигенов I класса [2]. В отличие от раково/тестикулярных антигенов, иммуногенность дифференцировочных антигенов меланоцитов невысока из-за иммунологической толерантности к этим "своим" антигенам. Однако такой антиген, как Melan-A/MART-1, содержит несколько эпитопов для узнавания ЦТЛ (цитотоксические лимфоциты) и способен индуцировать генерацию меланома-специфичных ЦТЛ.

Таким образом, экспрессия различных опухолевых маркеров играет одну из ключевых ролей в индукции противоопухолевого иммунитета. Разнообразие соответствующих антигенов позволяет более «комплементарно» подбирать клеточные линии для разработки вакцин.

Вакцины, приготовленные на основе опухолевых клеток, являются цельноклеточными вакцинами и представляют собой живые аллогенные или аутологичные опухолевые клетки.

Аутологичные/сингенные цельные опухолевые клетки заключают в себе практически все антигены, экспрессированные опухолью хозяина, что снижает риск появления аллергических реакций на чужеродные неопухолеспецифичные антигены, а также снижается риск контаминации патогенными вирусами и внутриклеточными паразитами. Вакцина, состоящая из нескольких клеточных линий (поливалентные вакцины), содержит широкий спектр опухолевых антигенов и используется как аллогенная. Такая поливалентная вакцина, как вакцина Mortona и соавт. [3], состоит из трех аллогенных меланомных клеточных линий с высокой экспрессией поверхностных иммуногенных глико- и липопротеинов и ганглиозидов. Клинические испытания такой вакцины показали, что развитие иммунного ответа как клеточного, так и гуморального типа на эти антигены коррелировало с повышением выживаемости пациентов. Другая вакцина, «Melacine» [4] (Corixa corp., Canada), состоящая из лизата аллогенных меланомных клеточных линий, вызывает противоопухолевый эффект у больных меланомой.

Задачей настоящего изобретения является получение новой опухолевой клеточной линии меланомы человека, несущей определенный набор антигенов, что позволит использовать ее в создании противоопухолевых вакцин.

Технический результат, получаемый при использовании изобретения, выражается в расширении арсенала клеточных линий, используемых для создания противоопухолевых вакцин (цельноклеточных, генно-инженерных), что дает возможность повысить эффективность лечения и увеличения продолжительности жизни при лечении злокачественных новообразований. Поставленная задача решается тем, что получена новая клеточная линия mel P из опухолевого образца диссеминированной меланомы человека.

Полученная клеточная линия обладает стабильными культуральными и морфологическими характеристиками. Хранится в коллекции клеточных культур института цитологии РАН под номером РККК (П) 688Д.

Родословная клеточной линии mel P

Линия клеток получена из опухолевого образца метастаза меланомы кожи. Материал получен путем удаления у пациентки Т.А.А. двух подкожных метастатических узлов. До забора материала больной проведено хирургическое, химиотерапевтическое лечение.

Получение клеточной линии mel P

Опухолевая ткань получена хирургическим путем при удалении метастазов кожи. Полученную суспензию клеток засевали во флаконы и культивировали в течение длительного времени. Стабильно растущая клеточная линия была получена на 15 пассаже.

Морфологические признаки mel P

Клеточная линия mel P характеризуется наличием полиморфных меланомных клеток преимущественно веретенообразной и вытянутой удлиненной формы с четкими границами базофильной цитоплазмы и гипер- и нормохромными ядрами с одиночными нуклеолами. Отмечаются почкование и фрагментация в отдельных крупных ядрах. Присутствуют гигантские многоядерные клетки с 3-5 ядрами и многочисленные фигуры клеточного деления.

Кариологическая характеристика mel P

Число хромосом в клетке от 55 до 84. Мода 79 хромосом. Постоянные маркеры: m1, m2, m3, m4, m5, m6.

Культуральные свойства mel P

Клеточная линия mel P культивируется в питательной среде RPMI (80%), эмбриональная телячья сыворотка 20%, содержащей антибиотики (пенициллин со стрептомицином в концентрации 100 ед/мл и 100 мкг/мл соответственно). В культуральные флаконы объемом 25 см2 в 5 мл среды засевают 1×106 клеток. Температура культивирования 37°С. Монослой клеток формируется через 3-4 дня. При посевной концентрации 70-100 тыс./мл монослой формируется на 2-3 сутки без смены среды. Клетки снимаются с использованием стандартных растворов 0,25% раствора трипсина и 0,02% раствора Версена в соотношении 1:1. При посевной концентрации 500 тыс/мл индекс пролиферации через 48 часов культивирования составляет 3.6-4.6.

Условия криоконсервации

Для длительного хранения клетки консервируют путем замораживания в жидком азоте. Клетки ресуспендируют в среде для замораживания - питательная среда RPMI (80%), эмбриональная телячья сыворотка 20%, 10% ДМСО. Режим замораживания: жидкий азот, снижение температуры на 1°С в минуту до минус 25°С, затем быстрое замораживание до минус 70°С. Хранение в жидком азоте при температуре минус 196°С. Размораживание быстрое, при 37°С. Клетки разводят в 10 мл бессывороточной среды и осаждают центрифугированием, ресуспендируют в 5 мл той же среды, содержащей 10% эмбриональной телячьей сыворотки, и переносят в культуральный флакон объемом 25 см2. Жизнеспособность клеток оценивают по включению трипанового синего. Жизнеспособность клеток после размораживания составляет 90%.

Контаминация

При длительном наблюдении бактерии и грибы в культуре не обнаружены. Тест на микоплазму отрицателен.

Примеры использования клеточной линии mel Р.

Пример 1. Культивирование клеточной линии mel Р.

Опухолевую ткань, полученную хирургическим путем при удалении метастазов меланомы кожи, разделяли механически на фрагменты величиной 2-3 мм 3 в среде RPMI-1640, затем, используя «Cell dissociation sieve-tissue kit» (Sigma), получали суспензию клеток. Количество жизнеспособных клеток определяли по стандартной методике в камере Горяева, используя 0,5% раствор трипанового синего в PBS. В культуральные флаконы объемом 25 см2 в 5 мл среды засевали 1×10 6 клеток. Температура культивирования 37°С. Клетки культивировали в среде RPMI 1640, содержащей 20% телячьей эмбриональной сыворотки, 2 мМ L-глутамина, 1% HEPES, пенициллин (100 ед/мл), стрептомицин (100 мкг/мл) и комплекс аминокислот и витаминов (Flow Lab.) в культуральных флаконах (Costar). После 15 пассажа получена стабильно растущая клеточная линия.

Пример 2. Определение антигенов, экспрессированных на клеточной линии mel Р.

Полученная клеточная линия mel Р, обладающая стабильными культуральными и морфологическими характеристиками, с помощью методов иммунофлюоресценции, иммуногистохимии, ПЦР (полимеразно-цепная реакция) анализа была исследована на экспрессируемые антигены (дифференцировочные, опухолеассоциированные и гистосовместимости).

Дифференцировочные меланомные маркеры, определяющие отношение данной линии к меланоме, исследованы нами с помощью моноклональных антител CD63, НМВ45, MelanA, Tyrosinaza, HMW. Раково-тестикулярный маркер-MAGE-3, который может быть экспрессирован на опухолях различного гистогенеза, исследован в реакции ПЦР. Антигены гистосовместимости определены с помощью моноклональных антител в реакции иммунофлюоресценции. Полученные данные отражены в таблице 1.

Таблица 1.

Экспрессия антигенов на клеточной линии mel Р. 
Дифференцировочные Антигены Раково-тестикулярные Антигены Антигены гистосовместимости 
CD63 положит MAGE-3 положит HLA (I класс) положит 
НМВ45 положит HLA-DR (II класс) отр 
MelanA Отр 
Tyrosinaza Отр 
HMW положит 


Как следует из табл.1 данная клеточная линия характеризуется экспрессией меланомных (дифференцировочных) маркеров: CD63, НМВ45, и HMW, подчеркивающих специфичность данной клеточной линии. Положительная экспрессия раково-тестикулярного маркера MAGE-3 соответствует онкологическому профилю и позволяет широко использовать данную линию для создания противоопухолевой вакцины. Антигены гистосовместимости представлены молекулой первого класса.

Таким образом, данная клеточная линия меланомы человека mel Р, имеет свой индивидуальный фенотип опухолевых маркеров, заключающийся в наличии дифференцировочных антигенов (CD63, НМВ45, HMW) и раково-тестикулярного (MAGE-3), что позволяет применять полученную клеточную линию для создания противоопухолевых вакцин (цельноклеточных, генно-инженерных), используемых для лечения меланомы и других злокачественных новообразований.

Список литературы

1. Barker C.F. et al. Immunologically privileged sites. ADV. Immunol. 1977, 25:1-54.

2. Tomita Y. et al. Immunohistochemical detection of intracellular adhesion molecule-1 (ICAM-1) and major histocompatibility complex class I antigens in seminoma. J. Urol. 149:659-663, 1993.

3. Morton D.L. et al. Ann N Y Acad Sci 1993; 690:120.

4. Sondak V.K., Sosman J.A. Results of clinical trials with an allogenic melanoma tumor cell lysate vaccine: Melacine / Semin cancer Biol. 2003. Dec. 13(6): 409-15.




ФОРМУЛА ИЗОБРЕТЕНИЯ


Клеточная линия меланомы человека mel P, используемая для создания противоопухолевых вакцин, хранится в Специализированной коллекции культур клеток позвоночных Российской коллекции клеточных культур под номером РККК (П) 688Д.