ПЛАЗМЕННЫЙ ЭМИТТЕР ИОНОВ

ПЛАЗМЕННЫЙ ЭМИТТЕР ИОНОВ


RU (11) 2045102 (13) C1

(51) 6 H01J27/04 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 25.10.2007 - действует 

--------------------------------------------------------------------------------

(21) Заявка: 93038498/25 
(22) Дата подачи заявки: 1993.07.27 
(45) Опубликовано: 1995.09.27 
(56) Список документов, цитированных в отчете о поиске: 1. Окс Е.М. и Чангин А.А. Использование сильноточного разряда в скрещенных Е х Н полях для получения трубчатых электронных и ионных пучков. 1 Всесоюзное совещание по пламенной эмисионной электронике. Сб. Плазменная эмиссионная электроника. Улан-Удэ, 1991, с.18-23. 2. Метель А.С. Источники пучков заряженных частиц большого сечения на основе тлеющего разряда с холодным полым катодом. Сб.Плазменная эмиссионная электроника. Улан-Удэ, 1991, с.77-81, рис.2. 
(71) Заявитель(и): Институт электрофизики Уральского отделения РАН 
(72) Автор(ы): Гаврилов Н.В.; Никулин С.П. 
(73) Патентообладатель(и): Институт электрофизики Уральского отделения РАН 

(54) ПЛАЗМЕННЫЙ ЭМИТТЕР ИОНОВ 

Использование: техника получения плазмы и генерации интенсивных ионных пучков с большим поперечным сечением. Сущность изобретения: эмиттер содержит полый цилиндрический катод 1, в одном из торцов которого выполнено многоапертурное эмиссионное окно 2, а на другом с помощью проходного изолятора соосно с катодом установлен штыревой анод 4. С внешней стороны катода соосно с ним установлен соленоид 5, создающий в полости магнитное поле с индукцией приблизительно 10-3Tл В катодную полость напускается газ и при приложении между катодом 1 и анодом 4 напряжения зажигается разряд, из плазмы которого через эмиссионное окно производится отбор ионов. 1 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к технике получения плазмы и генерации интенсивных ионных пучков с большим поперечным сечением.

Известны плазменные эмиттеры заряженных частиц на основе тлеющего разряда низкого давления, в которых для понижения рабочего давления и повышения плотности плазмы используются сильные магнитные поля с индукцией примерно 10-2-10-1 Тл. Такие плазменные эмиттеры используются для получения узких сфокусированных пучков в системах на основе отражательного разряда и для получения кольцевых пучков в системах на основе магнетронного разряда [1]

Однако наложение сильных магнитных полей приводит к значительной пространственной неоднородности генерируемой плазмы, что затрудняет использование таких систем для получения пучков большого сечения.

Генерация в больших объемах однородной плотной плазмы при низких давлениях обеспечивается в разрядах с полым катодом без магнитного поля. Для устойчивого горения разряда необходимо, чтобы длина энергетической релаксации осциллирующих внутри полого катода быстрых электронов была сопоставима с их средней длиной пробега в полости, что достигается увеличением размеров полости и снижением площади потерь быстрых осциллирующих электронов. Площадь потерь равна сумме площадей выходной апертуры полости и конструктивных элементов, имеющих положительный потенциал относительно катода.

Известный плазменный эмиттер ионов такого типа содержит полый катод с многоапертурным эмиссионным окном и размещенный внутри катода штыревой анод [2]

Однако зажигание такого разряда при низких давлениях затруднено из-за того, что напряжение зажигания разряда значительно превышает напряжение его горения. Это приводит к необходимости использования специальных систем инициирования, обеспечивающих повышение межэлектродного напряжения или создание поджигающей плазмы, инжектируемой затем в полость для поджига основного разряда. Это усложняет конструкцию разрядной системы и схему электропитания, вследствие чего снижается надежность устройства. Кроме того, предельные параметры генерируемых в таких источниках пучков ограничены, поскольку при небольших размерах полости для выполнения условия самостоятельности разряда необходимо увеличивать расход газа, что ухудшает электрическую прочность ускоряющего промежутка и приводит к снижению рабочего напряжения источника, а необходимость увеличивать размер полости при низких давлениях приводит к уменьшению плотности плазмы и соответственно к снижению величины и плотности эмиссионного тока.

Задачей изобретения является повышение газовой экономичности и надежности устройства в работе при сохранении плотности тока ионной эмиссии и однородности ее распределения.

Для этого в плазменном эмиттере ионов, содержащем штыревой анод и полый катод с многоапертурным эмиссионным окном, эмиссионное окно выполнено на одном из торцов цилиндрического полого катода, а с наружной стороны катода соосно с ним размещен соленоид, причем L D; l (0,5-0,8)L, где L, D длина и диаметр полого катода. l длина штыревого анода.

В предложенной конструкции эмиттера для зажигания разряда не требуется инжекции плазмы вспомогательного разряда в катодную полость или значительного повышения межэлектродного напряжения. Разряд устойчиво зажигается при более низких по сравнению с прототипом давлениях газа при приложении напряжения между катодом и анодом благодаря наложению магнитного поля, затрудняющего уход быстрых электронов на анод. Экспериментально установлено, что диапазон оптимальных для зажигания и горения разряда значений индукции магнитного поля меняется с родом газа, но для всех использовавшихся газов эти значения составляют величину 10-3 Тл. При меньших магнитных полях ( 10-4 Тл) возрастают потери быстрых электронов, а при более сильных ( 10-2 Тл) возникают шумы и неустойчивости плазмы, ухудшается ее однородность. Уменьшение диаметра анода снижает поверхность потерь быстрых электронов, но ограничено из-за ухудшения условий теплоотвода. При отношении размеров L D обеспечивается высокая плотность тока эмиссии при низких давлениях газа. Газовая экономичность ухудшается как при укорочении катода из-за повышения минимального рабочего давления газа, так и при его удлинении вследствие уменьшения тока эмиссии. При l < 0,5 L затрудняется горение разряда и уменьшается ток эмисси, а при l > 0,8 L увеличивается неоднородность распределения плотности тока эмиссии. Предложенный плазменный эмиттер ионов благодаря указанным отличительным признакам обладает повышенной надежностью и газовой экономичностью.

На чертеже представлен предложенный плазменный эмиттер ионов.

Эмиттер содержит полый цилиндрический катод 1, в одном из торцов которого выполнено многоапертурное эмиссионное окно 2, а на другом с помощью проходного изолятора 3 соосно с катодом установлен штыревой анод 4. С внешней стороны катода соосно с ним установлен соленоид 5.

Плазменный эмиттер ионов работает следующим образом.

Через соленоид 5 пропускается ток, создающий в полости магнитное поле с индукцией 10-3 Тл. В катодную полость напускается газ, и при приложении между катодом 1 и анодом 4 напряжения зажигается разряд, из плазмы которого через эмиссионное окно производится отбор ионов.

Испытания опытного образца плазменного эмиттера ионов проводились в импульсно-периодическом режиме при непрерывном напуске газа в катодную полость диаметром 150 мм. Диаметр анода составлял 3 мм, длина 100 мм. Длительность импульса составляла 2 10-3 с, частота следования импульсов до 25 гц. Получен импульсный ток эмиссии ионов 0,4 А с плазменной поверхности 200 см2. Давление в газоразрядной камере было 10-2 Па, в то время как в прототипе при таких размерах газоразрядной камеры для устойчивого горения разряда необходимо давление 10-1 Па, а снижение давления до 510-2 Па может быть достигнуто только при существенном (до 0,8 м) увеличении длины полого катода. Зажигание разряда и его поддержание обеспечивалось одним источником питания с напряжением холостого хода до 1,8 кВ. Напряжение горения разряда в зависимости от рода газа и его давления, а также температуры катода изменялось в пределах 500-900 В. Неоднородность распределения плотности эмиссионного тока не превышала 8%

Использование предлагаемого плазменного эмиттера ионов в технологических источниках заряженных частиц позволит снизить давление газа и напряжение зажигания разряда, что обеспечит достижение более высоких ускоряющих напряжений и позволит повысить надежность устройства за счет упрощения конструкции и схем электрического питания источников, что существенно улучшит их функциональные и эксплуатационные характеристики. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



ПЛАЗМЕННЫЙ ЭМИТТЕР ИОНОВ, содержащий полый катод, в одной из частей которого выполнены эмиссионные отверстия, и размещенный в полости катода анод, выполненный в виде штыря, отличающийся тем, что катод имеет форму цилиндра с выполненными в торце эмиссионными отверстиями, анод установлен соосно с катодом, с внешней стороны которого соосно размещен соленоид, при этом размеры катода выбраны из условий l (0,5 0,8)L, L D, l длина анода, L длина полости катода, D диаметр полости катода.


ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к лазерным квантовым генераторам, а именно лазеры и лазерное оборудование:

- твердотельные полупроводниковые лазеры

- газовые лазеры

- химические лазеры

- практическое применение в промышленности, науке и в быту газовых, твердотельных и химических лазеров.


Лазеры. Лазерное оборудование






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+газовый -лазер".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "лазер" будут найдены слова "лазеры", "лазерный" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("лазер!").



Рейтинг@Mail.ru