ИНЖЕКЦИОННЫЙ ЛАЗЕР

ИНЖЕКЦИОННЫЙ ЛАЗЕР


RU (11) 2035103 (13) C1

(51) 6 H01S3/19 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 25.10.2007 - действует 

--------------------------------------------------------------------------------

(21) Заявка: 93003840/25 
(22) Дата подачи заявки: 1993.01.26 
(45) Опубликовано: 1995.05.10 
(56) Список документов, цитированных в отчете о поиске: 1. ЕП 0376753, кл. H 01S 3/19, 1989. 2. Appl.Phus.Lett., 1987, V.51, N12, p.877-879. 
(71) Заявитель(и): Давыдова Е.И.; Поповичев В.В.; Успенский М.Б.; Хлопотин С.Е.; Швейкин В.И.; Шишкин В.А. 
(72) Автор(ы): Давыдова Е.И.; Поповичев В.В.; Успенский М.Б.; Хлопотин С.Е.; Швейкин В.И.; Шишкин В.А. 
(73) Патентообладатель(и): Швейкин Василий Иванович; Шишкин Виктор Александрович 

(54) ИНЖЕКЦИОННЫЙ ЛАЗЕР 

Использование: в полупроводниковой квантовой электронике, в лазерных и суперлюминесцентных источниках излучения для систем связи, считывания и записи информации, контрольно-измерительной аппаратуре, медицинской техники. Сущность изобретения: в инжекционном лазаре на основе гетероструктуры полупроводниковых соединений AIIIBIV и их твердых растворов с эмиттерными слоями и помещенной между ними активной областью, мезаполоской с основанием, расположенным в ближайшем к ней эмиттерном слое и барьерными слоями из селенида свинца выбраны форма и размеры мезаполоски, а также размер противоположного эмиттерного слоя. 1 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к полупроводниковой квантовой электронике, к лазерным и суперлюминесцентным источникам излучения, используемым в системах связи, считывания и записи информации, контрольно-измерительной аппаратуре, медицинской технике и т.д.

Известна конструкция инжекционного лазера с гребневидным волноводом, сформированным в двойной гетероструктуре путем формирования мезаполоски с основанием, лежащим в ближайшем эмиттерном слое. В этом случае на боковых границах мезаполоски возникает скачок эффективного показателя преломления, обеспечивающий боковое оптическое ограничение излучения [1]

Наиболее близким по технической сущности и решаемой задаче является инжекционный лазер на основе гетероструктуры полупроводниковых соединений AlllBV и их твердых растворов с эмиттерными слоями и помещенной между ними активной областью, мезаполоской с основанием, расположенным в ближайшем к ней эмиттерном слое, и барьерными слоями из селенида цинка, расположенными на боковых поверхностях мезаполоски и прилегающих поверхностях эмиттерного слоя [2] Селенид цинка имеет более высокое объемное сопротивление (107 Ом см) и меньший, чем у AlGaAs, показатель преломления (n 2,58 при длине волны = 0,83 мкм). В результате ток утечки сквозь барьерный слой снижается до ничтожного значения, а под полоской образуется устойчивый гребневидный волновод с хорошим боковым оптическим ограничением, причем поглощение излучения в более широкозонном материале (ZnSe) практически отсутствует.

Отмеченные выше потенциальные возможности конструкции с барьерным слоем из ZnSe в данной работе полностью не реализованы. Можно выделить лишь высокое значение внешней квантовой эффективности (76%). Остальные параметры: пороговый ток 28 мА и линейность ватт-амперной характеристики до 15 мВт не удовлетворяют современным требованиям. Также в данной конструкции невозможно получить одномодовый характер генерации при уровнях мощности порядка 50-100 мВт. Максимальный скачок nэфф 2,210-3 недостаточен для создания оптимального оптического ограничения. Большая разность показателей преломления внутри волновода и вне его n 3,5-2,6 из-за опасности возникновения поперечных колебаний не позволяет уменьшить ширину мезаполоски, необходимую для получения стабильного одномодового режима. Весьма затруднительно воспроизводимое изготовление приборов с мезаполоской конструкции, описанной в прототипе.

Техническим результатом изобретения является стабилизация одномодового режима генерации при повышении мощности излучения и улучшение пространственной диаграммы излучения.

В настоящем инжекционном лазере мезаполоска имеет в поперечном сечении форму прямоугольника шириной 1.3 мкм с плавным расширением, начинающимся на расстоянии от основания не более чем 0,3 мкм, причем отношение ширины основания мезаполоски к ширине ее прямоугольной части лежит в диапазоне 1,5.3,0, а толщина противоположного эмиттерного слоя составляет не менее 2,5 мкм.

На чертеже показан предлагаемый лазер.

Лазер содержит гетероэпитаксиальную четырехслойную структуру 1, эмиттеры 2 и 3, контактный слой 4, мезаполоску 5, барьерный слой 6 из ZnSe, активную область 7, диаграмму 8 излучения в плоскости p-n-перехода, подложку 9, слои 10 и 11 оптических контактов, расширенный контакт 12 и трехслойный волновод 13.

П р и м е р. В пятислойной эпитаксиальной структуре на 0,85 мкм составе контактный слой 4 GaAsp++. Р-эмиттер 3 Al0,6Ga0,4As, волноводный слой Al0,3Ga0,7As, активная область 7 Al0,05Ga0,95As, волноводный слой Al0,3Ga0,4As, N-эмиттер 2 Al0,6Ga0,4As. Сформирована мезаполоска 5 шириной 2,8 мкм. Толщина Р-эмиттера 3 вне мезы составила 0,05 мкм, а начало плавного расширения мезы удалено от активной области на 0,2 мкм. Мезаструктура со сформированным полосковым омическим контактом слоя 10 была заращена слоем 6 ZnSе толщиной 0,4 мкм, а после его удаления со стороны эпитаксиальных слоев напылен расширенный контакт 12.

Формирование сплошного контакта Au-Ge-Au производилось по стандартной технологии. Затем пластина разделялась на элементы, которые напаивались на медный теплоотвод для испытаний.

Измерения дали следующие результаты, существенно превосходящие параметры лазеров, описанных в прототипе:

Iпор 20-25 мА

эфф 60-70%

Линейность ВТАХ до 80-100 мВт

Предельная мощность до 200 мВт

Угловая расходимость излучения 10х25о

Астигматическая разность менее 5 мкм.

Проведенные экспериментальные исследования предложенного инжекционного лазера, как и показано в примере, позволили снизить пороговые токи, увеличить квантовую эффективность, улучшить линейность ватт-амперной характеристики, что позволило стабилизировать одномодовый режим регенерации при повышенных мощностях излучения (до 200 мВт в непрерывном режиме) и улучшить пространственную диаграмма излучения, приближая ее к окружности при снижении астигматизма. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



ИНЖЕКЦИОННЫЙ ЛАЗЕР на основе гетероструктуры полупроводниковых соединений AIII BV и их твердых растворов с эмиттерными слоями и помещенной между ними активной областью, мезаполоской с основанием, расположенным в ближайшем к ней эмиттерном слое, и барьерными слоями из селенида цинка, расположенными на боковых поверхностях мезаполоски и прилегающих поверхностях эмиттерного слоя, отличающийся тем, что мезаполоска имеет в поперечном сечении форму прямоугольника шириной 1 3 мкм с плавным расширением, начинающимся на расстоянии от основания не более 0,3 мкм, причем отношение ширины основания мезаполоски к ширине ее прямоугольной части лежит в диапазоне 1,5 3,0, а толщина противоположного эмиттерного слоя составляет не менее 2,5 мкм.


ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к лазерным квантовым генераторам, а именно лазеры и лазерное оборудование:

- твердотельные полупроводниковые лазеры

- газовые лазеры

- химические лазеры

- практическое применение в промышленности, науке и в быту газовых, твердотельных и химических лазеров.


Лазеры. Лазерное оборудование






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+газовый -лазер".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "лазер" будут найдены слова "лазеры", "лазерный" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("лазер!").



Рейтинг@Mail.ru