ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР С ПРОДОЛЬНОЙ НАКАЧКОЙ

ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР С ПРОДОЛЬНОЙ НАКАЧКОЙ


RU (11) 2172544 (13) C1

(51) 7 H01S3/02 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 07.12.2007 - действует 

--------------------------------------------------------------------------------

(21) Заявка: 2000105105/28 
(22) Дата подачи заявки: 2000.03.02 
(24) Дата начала отсчета срока действия патента: 2000.03.02 
(45) Опубликовано: 2001.08.20 
(56) Список документов, цитированных в отчете о поиске: RU 2105399, 20.02.1998. RU 1750403, 20.10.1996. US 5661738, 26.08.1997. Байбородин Ю.В. Введение в лазерную технику. - Киев: Техника, 1977, с. 69. 
(71) Заявитель(и): Семенков Виктор Прович 
(72) Автор(ы): Залевский И.Д.; Семенков В.П.; Чешев Е.А.; Котляревский А.Н. 
(73) Патентообладатель(и): Залевский Игорь Дмитриевич; Семенков Виктор Прович 
Адрес для переписки: 113525, Москва, ул. Днепропетровская, 3, корп. 5, кв.36, В.П.Семенкову 

(54) ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР С ПРОДОЛЬНОЙ НАКАЧКОЙ 

Изобретение относится к лазерной технике, а именно к твердотельным лазерам с продольной накачкой. Лазер включает последовательно соединенные оптический модуль накачки и резонатор лазера с выходным зеркалом и активным элементом, вклеенным теплопроводящим компаундом в калиброванный ложемент. Ложемент выполнен со стороны оптического модуля накачки в цилиндрической оправе резонатора, закрепленной в корпусе лазера соосно с оптической осью модуля накачки. Калибр ложемента D = d + (5 - 50) мкм, где d - диаметр активного элемента. Технический результат изобретения: обеспечение угловой стабилизации излучения в широком диапазоне температур. 2 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение предназначено для использования в приборостроении, в лазерной технике и оптической связи.

Известен твердотельный лазер с продольной накачкой (Куратьев И.И. и др. Неодимовые излучатели с лазерной диодной накачкой, Известия АН СССР, сер. физическая. - М. : Наука, 1990, т. 54, N 10), в котором излучение двух лазерных диодов фокусируется первой оптической системой, складывается поляризационной призмой и фокусируется второй оптической системой в активный элемент твердотельного лазера. Резонатор лазера образован гранью активного элемента, обращенной ко второй фокусирующей системе, и выходным зеркалом. Для удержания требуемой длины волны накачки лазерные диоды установлены на двух микрохолодильниках, поддерживающих заданную рабочую температуру диодов.

Такой лазер характеризуется относительно небольшой мощностью и предназначен для использования в лабораторных условиях.

Наиболее близким к заявляемому техническому решению является твердотельный лазер с накачкой лазерными диодами (Патент N 2105399, МКИ: 6 H 01 S 3/094, приоритет 3.12.96), включающий микрохолодильник, на теплопроводящей пластине которого установлены лазерные диоды с цилиндрическими линзами, трапецеидальную призму, а также последовательно соединенные сферическую линзу, активный элемент и выходное зеркало резонатора, причем на торец активного элемента со стороны сферической линзы нанесено комбинированное покрытие, а на противоположный торец нанесено просветляющее покрытие.

Недостатком известного лазера является угловая нестабильность выходного излучения лазера при изменении температуры окружающей среды и ограниченный температурный диапазон его работы, что не позволяет использовать его в промышленных условиях.

Целью изобретения является обеспечение угловой стабилизации лазерного излучения в широком температурном диапазоне, упрощение конструкции, сборки и юстировки элементов лазера.

Поставленная цель достигается тем, что в твердотельном лазере с продольной накачкой, в корпусе которого установлены последовательно соединенные оптический модуль накачки и резонатор лазера с активным элементов и выходным зеркалом, активный элемент вклеен теплопроводящим компаундом в калиброванный ложемент, который выполнен со стороны оптического модуля накачки в цилиндрической оправе резонаторов, закрепленной в корпусе лазера соосно с оптической осью модуля накачки, при этом калибр ложемента D= d + (5-50) мкм, где d - диаметр активного элемента.

Вклейка активного элемента теплопроводящим компаундом в калиброванный ложемент цилиндрической оправы резонатора, закрепленной в корпусе лазера соосно с оптической осью модуля накачки, и выбор калибра ложемента D = d + (5-50) мкм, где d - диаметр активного элемента, позволили обеспечить угловую стабилизацию лазерного излучения в широком температурном диапазоне. Размещение элементов резонатора лазера в цилиндрической оправе, то есть выполнение его в виде отдельного блока позволило упростить конструкцию, сборку и юстировку элементов лазера.

Заявителю не известны твердотельные лазеры с продольной накачкой, в которых бы обеспечение угловой стабилизации лазерного излучения в широком температурном диапазоне достигалось подобным образом.

На фигуре 1 представлена конструкция твердотельного лазера с продольной накачкой.

На фигуре 2 - разрез А-А на фигуре 1.

Твердотельный лазер с продольной накачкой (фиг. 1) содержит корпус 1, в котором установлены оптический модуль накачки 2 и резонатор лазера, состоящий из цилиндрической оправы 3 с закрепленными в ней активным элементом 4 и выходным зеркалом с оправой 5. Активный элемент 4 вклеен в калиброванный ложемент 6, который выполнен в цилиндрической оправе 3 резонатора лазера, теплопроводящим компаундом. Резонатор лазера закреплен между опорной 7 и зажимной 8 (фиг. 2) частями корпуса 1 лазера соосно с оптической осью модуля накачки 2. На торец 9 активного элемента 4, обращенного к оптическому модулю накачки 2, нанесено комбинированное покрытие, отражающее на рабочей длине волны лазера и пропускающее на длине волны накачки. На противоположный торец 10 активного элемента 4 нанесено просветляющее покрытие на рабочую длину волны лазера. Оптический модуль накачки 2 в простейшем случае содержит лазерный диод с цилиндрической линзой 11, фокусирующую линзу 12 и микрохолодильник 13. Для более мощного лазера оптический модуль накачки 2 может содержать, например, три лазерных диода, как у прототипа, излучение которых суммируется с помощью трапецеидальной призмы и линзы сумматора.

Резонатор лазера выполнен в виде отдельного блока. Юстировка резонатора лазера осуществляется предварительно на оптическом стенде. После предварительной юстировки он устанавливается (фиг. 2) между опорной 7 и зажимной 8 частями корпуса 1 лазера соосно с оптической осью модуля накачки 2 таким образом, чтобы активный элемент 4 располагался со стороны оптического модуля накачки 2.

Калибр ложемента D = d + (5 - 50) мкм, где d - диаметр активного элемента. Величина зазора между калиброванным ложементом 6 цилиндрической оправы 3 и активным элементом 4 резонатора лазера определяется величиной зерен наполнителя теплопроводящего компаунда и, предпочтительно, должна в два - четыре раза превышать максимальный размер зерен.

Отношение внешнего диаметра цилиндрической оправы 3 резонатора лазера к диаметру активного элемента 4 определяется теплопроводностью материала, из которого выполнена цилиндрическая оправа. При изготовлении цилиндрической оправы 3 из алюминиевых сплавов это отношение целесообразно выбирать больше четырех.

В качестве теплопроводящего компаунда можно использовать эпоксидные клеи или самополимеризующиеся герметики, предпочтительно с теплопроводностью не хуже 2 Вт/(мК).

Твердотельный лазер с продольной накачкой работает следующим образом.

Излучение лазерного диода с цилиндрической линзой 11 оптического модуля накачки 2 проходит фокусирующую линзу 12 и через комбинированное покрытие, нанесенное на торец 9 активного элемента 4 резонатора лазера, отражающее на рабочей длине волны и пропускающее на длине волны накачки, проходит в активный элемент 4 резонатора лазера и осуществляет его накачку. На выходном торце 10 активного элемента 4 нанесено просветляющее покрытие на рабочую длину волны лазера. Резонатор лазера снабжен выходным зеркалом 5.

Отвод тепла от активного элемента 4 лазера осуществляется через теплопроводящий компаунд радиально в цилиндрическую оправу 3 и далее через места крепления (опорная 7 и зажимная 8 части корпуса) цилиндрической оправы в корпус 1 лазера. При этом в активном элементе 4 не возникает тепловой изменяющейся цилиндрической линзы, приводящей к угловому смещению выходного излучения лазера.

В прототипе, при изменении температуры корпуса на 10oC относительно средней температуры 20oC наблюдался уход лазерного пучка до 30 угловых минут относительно среднего положения при значительном, в несколько раз, изменении выходной мощности. При большем изменении температуры генерация лазерного излучения прекращалась.

Экспериментальные исследования предлагаемого лазера в диапазоне температур от -40oC до +50oC показали, что угловое положение лазерного пучка относительно его положения при температуре корпуса 20oC изменяется не более единиц угловых секунд, при изменении выходной мощности лазера не более 20%.

Предложенная конструкция твердотельного лазера с продольной накачкой, в которой активный элемент вклеен теплопроводящим компаундом в калиброванный ложемент, выполненный со стороны оптического модуля накачки в цилиндрической оправе резонатора, закрепленной в корпусе лазера соосно с оптической осью модуля накачки, при этом калибр ложемента D = d + (5-50) мкм, где d - диаметр активного элемента, позволила, путем отвода тепла с активного элемента в цилиндрическую оправу и затем на корпус лазера, обеспечить угловую стабилизацию лазерного излучения в широком диапазоне температур. Размещение элементов резонатора лазера в цилиндрической оправе, то есть выполнение резонатора в виде отдельного блока позволило упростить конструкцию, облегчить сборку и настройку лазера. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



Твердотельный лазер с продольной накачкой, в корпусе которого установлены последовательно соединенные оптический модуль накачки и резонатор лазера с активным элементом и выходным зеркалом, отличающийся тем, что активный элемент вклеен теплопроводящим компаундом в калиброванный ложемент, который выполнен со стороны оптического модуля накачки в цилиндрической оправе резонатора, закрепленной в корпусе лазера соосно с оптической осью модуля накачки, при этом калибр ложемента D = d + (5 - 50) мкм, где d - диаметр активного элемента.


ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к лазерным квантовым генераторам, а именно лазеры и лазерное оборудование:

- твердотельные полупроводниковые лазеры

- газовые лазеры

- химические лазеры

- практическое применение в промышленности, науке и в быту газовых, твердотельных и химических лазеров.


Лазеры. Лазерное оборудование






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+газовый -лазер".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "лазер" будут найдены слова "лазеры", "лазерный" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("лазер!").



Рейтинг@Mail.ru