СОГЛАСОВАННЫЙ ФИЛЬТР

СОГЛАСОВАННЫЙ ФИЛЬТР


RU (11) 2016493 (13) C1

(51) 5 H03H9/46 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 07.12.2007 - прекратил действие 

--------------------------------------------------------------------------------

(21) Заявка: 4948124/22 
(22) Дата подачи заявки: 1991.06.24 
(45) Опубликовано: 1994.07.15 
(56) Список документов, цитированных в отчете о поиске: Каринский С.С. Устройства обработки сигналов на ультразвуковых поверхностных волнах. М.: Сов.радио, 1975. Ширман Я.Д. Разрешение и сжатие сигналов. М.: Сов.радио, 1974, с.172. 
(71) Заявитель(и): Всесоюзный научный центр "Государственный оптический институт им.С.И.Вавилова" 
(72) Автор(ы): Меньших О.Ф. 
(73) Патентообладатель(и): Меньших Олег Федорович 

(54) СОГЛАСОВАННЫЙ ФИЛЬТР 

Изобретение относится к радиотехнике и приборостроению. Согласованный фильтр может быть использован в лазерной локации с когерентным приемом, непрерывным излучением и быстрым сканированием по угловым координатам, а также в измерительной технике и системах специализированной связи. Цель изобретения - упрощение фильтра. Упрощение фильтра достигнуто путем когерентного накопления сигнала в монопериодической структуре выходного электрода линии задержки (ЛЗ) с последующей узкополосной фильтрацией расширенного до длительности в N раз радиоимпульсного сигнала и усиления смеси сигнала и шума перед смесителем до такого уровня, при котором собственный широкополосный шум смесителя можно не учитывать при оценке результирующего отношения сигнал/шум на выходе ДЛЗ. 1 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к радиотехнике и может быть использовано в обнаружителях сигналов лазерных когерентных локаторов с непрерывным режимом излучения и обзором по угловым координатам.

В радио- и оптической локации широкое применение нашли широкополосные сигналы для повышения обнаружительной способности и разрешающей способности локаторов. Сжатие таких сигналов осуществляют в согласованных фильтрах, максимизирующих отношение сигнал/шум на их выходе. В качестве важного компонента такого согласованного фильтра используют дисперсионные линии задержки (ДЛЗ) на поверхностных акустических волнах (ПАВ).

Наиболее близким техническим решением является анализатор с ДЛЗ на ПАВ, осуществляющий спектровременное сжатие широкополосного сигнала локатора, который содержит последовательно включенные полосовой фильтр, смеситель и ДЛЗ, а также линейно-частотно-модулированный (ЛЧМ) гетеродин, включенный к второму входу смесителя. В таком анализаторе полосовой фильтр является существенно широкополосным в силу широкополосности самого обрабатываемого сигнала, что снижает возможности увеличения отношения сигнал/шум на выходе ДЛЗ в случае приема квазимонохроматических радиоимпульсных сигналов лазерных когерентных локаторов с непрерывным излучением и обзором по угловым координатам. Недостатком этого устройства также является его сложность.

Целью изобретения является упрощение фильтра.

Согласованный фильтр содержит последовательно соединенные полосовой фильтр, смеситель и ДЛЗ, а также ЛЧМ-гетеродин, поключенный к второму входу смесителя, и отличается введением в него компенсирующего усилителя и линии задержки на ПАВ, выходной электрод которой выполнен в виде согласованной с несущей частотой входного радиоимпульса монопериодической и непрерывной структуры с продольной длиной вдоль вектора распространения ПАВ, равно lвых= Nv n, где N - число, много большее единицы; v - скорость распространения ПАВ; n - длительность входного радиоимпульса, причем выходной электрод соединен с входом полосового фильтра через компенсирующий усилитель, а полоса пропускания f полосового фильтра соответствует условию f1/N n.

Упрощение фильтра достигнуто путем когерентного накопления сигнала в монопериодической структуре выходного электрода линии задержки (ЛЗ) с последующей узкополосной фильтрацией расширенного до длительности в N раз радиоимпульсного сигнала и усиления смеси сигнала и шума перед смесителем до такого уровня, при котором собственный широкополосный шум смесителя можно не учитывать при оценке результирующего отношения сигнал/шум на выходе ДЛЗ.

На чертеже представлена схема согласованного фильтра.

Фильтр содержит последовательно соединенные ЛЗ 1 с входным 2 и выходным 3 электродами, компенсирующий усилитель 4, полосовой фильтр 5, смеситель 6, снабженный ЛЧМ-гетеродином 7, и ДЛЗ 8.

Входной радиоимпульс длительностью n воздействует на входной электрод 2 ЛЗ 1, возбуждая в звукопроводе последней, выполненном из пьезоэлектрика, ПАВ в форме волнового цуга с продольным размером v nвдоль вектора распространения ПАВ в звукопроводе ЛЗ. По мере движения этого цуга волн в пространстве выходного электрода 3 в его элементах возбуждаются ЭДС на частоте несущих колебаний входного радиоимпульса. В силу непрерывности и монопериодичности структуры выходного электрода 3 ЛЗ парциальные колебания, возбуждаемые локально в различных участках этого электрода, когерентно складываются во времени между собой, если выполняется условие согласования монопериодической структуры с частотой несущих колебаний входного радиоимпульса, в частности, когда расстояние между смежными штырями монопериодической структуры выходного электрода 3 равно половине длины волны несущего колебания входного радиоимпульса либо целочисленно-кратно ей для соответствующего ПАВ в звукопроводе ЛЗ 1. В результате такого накопления растет не амплитуда выходного радиоимпульса, а его длительность, т.е. имеет место спектровременное преобразование входного сигнала. В результате такого преобразования длительность выходного радиоимпульса, поступающего через компенсирующий усилитель 4 на вход полосового фильтра 5, когерентно расширяется в N раз, где N= */n, * - время длительного взаимодействия волнового цуга с выходным электродом 3 ЛЗ 1, определяемое длиной последнего lвых=v *.

N-кратное расширение длительности радиоимпульса позволяет сузить в N раз полосу пропускания во входной цепи смесителя 6 путем выбора полосы пропускания f в полосовом фильтре 5, равной (соизмеримой) обратной величине длительности радиоимпульса, образующегося на выходе ЛЗ 1, т.е. f1/N n. При этом отсутствует потеря энергии полезного сигнала, участвующего в процессе его сжатия во времени на основе ДЛЗ 8. С другой стороны, N-кратное сужение полосы пропускания в полосовом фильтре 5 обеспечивает инвариантность дисперсии шума на выходе полосового фильтра 5 по отношению к изменению времени взаимодействия волнового цуга в пространстве выходного электрода 3 ЛЗ, дисперсия шума на выходе которого при этом N-кратно возрастает в процессе N-кратного расширения радиоимпульса по длительности на выходе ЛЗ 1. В силу свойства инвариантности для дисперсии шума на выходе полосового фильтра 5, согласованного с длительностью расширенного когерентно радиоимпульса по вышеуказанному условию, стало возможным существенно увеличивать число N (кратность накопления энергии полезного сигнала) за счет увеличения длины выходного электрода 3 в ЛЗ 1, ограничение на величину которой определяется практически технологическими возможностями изготовления ЛЗ. Другим существенным ограничением числа N является фактор монохроматичности входного радиоимпульса, определяемый стабильностью частоты излучения лазерного передатчика локатора (дисперсией Аллана).

В компенсирующем усилителе 4 смесь сигнала и шума линейно усиливается до уровня, при котором дисперсия узкополосного шума на выходе полосового фильтра 5 оказывается существенно большей дисперсии собственного шума широкополосного тракта смесителя 6. Широкополосность тракта по цепи "смеситель-ДЛЗ" определяется рабочей полосой ДЛЗ FЛЗ, которая на несколько порядков может быть больше полосы пропускания в полосовом фильтре 5, поэтому коэффициент усиления в компенсирующем усилителе 4 должен выбираться по условию

k > , где Gсм - спектральная полость мощности шума смесителя 6 (обычно =3 ... 5). При выполнении этого условия собственным широкополосным шумом смесителя в полосе ДЛЗ 8 FЛЗ можно пренебречь, и дисперсия шума на выходе ДЛЗ III останется почти такой же, как и на выходе полосового фильтра 5 (при условии, что коэффициент передачи в тракте "смеситель - ДЛЗ" равен единице, что требует, естественно, применения усилителя после ДЛЗ 8. В то же самое время полезный радиоимпульс длительностью *= N nпосле его ЛЧМ-преобразования в смесителе 6 с ЛЧМ-колебанием гетеродина 7 будет сжат во времени с помощью ДЛЗ 8 в базу раз B= FЛЗ ЛЗ, где ЛЗ- длительность импульсной характеристики ДЛЗ 8, которая выбирается из условия соизмеримости с длительностью когерентно расширенного во времени входного радиоимпульса (ЛЗ*). В силу закона сохранения энергии такое временное сжатие выходного радиоимпульса на выходе ДЛЗ 8 приведет к -кратному увеличению амплитуды напряжения сжатого радиоимпульса (корреляционного пика) по сравнению с напряжением сигнала на выходе полосового фильтра 5 (также в предположении единичного коэффициента передачи в тракте "смеситель - ДЛЗ", как это имело место при рассмотрении величины дисперсии шума на выходе ДЛЗ 8).

В связи с тем, что отношение сигнал/шум на выходе полосового фильтра 5 не изменилось по отношению к исходному значению o благодаря свойству инвариантности дисперсии шума на выходе полосового фильтра 5 по отношению к изменению числа N, т.е. по отношению к изменению длины выходного электрода 3 ЛЗ 1 при соблюдении условия выбора ширины полосы в полосовом фильтре f 1/N n, а работа широкополосного тракта (в полосе FЛЗ) "смеситель - ДЛЗ" осуществляется практически без учета собственного шума смесителя за счет рационального выбора коэффициента усиления в компенсирующем усилителе 4, то нетрудно понять, что отношение сигнал/шум на выходе ДЛЗ 8 будет существенно увеличено (в B раз) по сравнению с максимально возможным значением o, которое достигается на выходе известных оптимальных (согласованных) фильтров с учетом равномерного по спектру гауссовского шума на входе таких фильтров, т.е. на выходе ДЛЗ 8 отношение сигнал/шум * станет равным *=В o. Это определяет конкретную пользу от применения предлагаемого фильтра.

П р и м е р. ЛЗ 1 работает на центральной частоте 60 МГц с переходным затуханием 80 дБ в полосе частот 10 МГц с длительностью взаимодействия волнового цуга ПАВ с выходным ее электродом *=85 мкс. На входной электрод 2 ЛЗ 1 воздействует радиоимпульс длительностью n=100 нс и с несущей частотой 60 МГц, согласованной с монопериодической структурой выходного электрода ЛЗ1 с учетом скорости распространения ПАВ в звукопроводе ЛЗ (в пьезокварца V=3,16 мм/мкс). При этом кратность уширения N длительности радиоимпульса на выходе ЛЗ будет равна N=850. В качестве ДЛЗ 8 используем стандартную ДЛЗ типа ЖГЗ. 836.022 в режиме третьей гармоники с параметрами: FЛЗ=120 МГц; ЛЗ=40 мкс и центральной частотой полосы прозрачности в 180 МГц. Переходное затухание в такой ДЛЗ в режиме третьей гармоники будет порядка -80 дБ. При использовании ЛЧМ-гетеродина 7 с центральной частотой ЛЧМ-импульсов гетеродинирования в 240 МГц, длительностью импульсов 80 мкс и полосой перестройки по линейному закону в пределах от 360 до 120 Мгц получаем достаточную избыточность во времени ЛЧМ-сканинге в ЛЧМ-гетеродине 7, обусловленную неопределенностью момента приема локатором входного радиоимпульса, отраженного от объекта локации, и при этом получаем ЛЧМ-эквивалент когерентно расширенного по длительности радиоимпульса на выходе смесителя 6 с частотой перестройкой его в зависимости от момента приема входного радиоимпульса в частотных границах от 300 до 60 МГц во времени 80 мкс. Однако, поскольку длительность импульсной характеристики ДЛЗ 8 выбрана равной 40 мкс, т.е. меньше приблизительно вдвое длительности когерентно расширенного по длительности радиоимпульса на выходе полосового фильтра 5 (85 мкс), то не вся его энергия будет обрабатываться в процессе спектровременного сжатия в ДЛЗ 8 (а только длительность в 40 мкс). Тем не менее расширение длительности радиоимпульса на выходе полосового фильтра 5 до 85 мкс (избыточное по сравнению с длительностью импульсной характеристики ДЛЗ 8 в 40 мкс) оказывается полезным, поскольку расширяет диапазон неопределенности приема входного радиоимпульса по времени относительно синхроимпульса запуска ЛЧМ-гетеродина 7 до величины 22,5 мкс, т.е. расширяет глубину диапазона дальностей до объектов локации (в данном примере до 6,75 км, например, от 2,25 до 8 км). Коэффициент временного сжатия в ДЛЗ 8 без аподизации составляет B=120 МГц х 40 мкс= 4800. Если спектральная плотность мощности на входе приемника локатора равна G= 210-19 Вт/Гц в полосе шума 10 МГц, дисперсия шума на входе составляет 10-12 Вт, и эта величина задает порог чувствительности обнаружителя (при отношении сигнал/шум на входе решающего устройства, равном единице). Это означает, что если для обеспечения в локаторе требуемой вероятности обнаружения сигнала необходимо, например, иметь отношение сигнал/шум на выходе ДЛЗ 8 равным =12, то с учетом сжатия в ДЛЗ 8 (4700) минимальная мощность обнаруживаемого сигнала, воздействующего на фотоприемное устройство локатора, равна 310-14 Вт. При спектральной плотности мощности шума в смесителе 6 около 310-18 ВТ/Гц в рабочей полосе ДЛЗ 8 в 120 МГц дисперсия шума на входе смесителя имеет порядок 3,610-10 Вт. Для пренебрежения этой дисперсией собственного широкополосного шума смесителя при оценке шума на выходе ДЛЗ 8 величина коэффициента усиления в компенсирующем усилителе 4 должна быть существенно больше, чем 380, например, около 60 дБ. С учетом потерь сигнала в в ЛЗ 1 (80 дБ) и в полосовом фильтре 5 (до 10 дБ) полное усиление в усилительном тракте от входа до смесителя должно быть не менее 150 дБ в узкой полосе частот порядка 12 кГц на средней частоте 60 МГц. Полоса пропускания тракта формируется в полосовом фильтре 5 и равна 12 кГц применительно к выражению f1/N n при заданной конструкции ЛЗ 1. Такой полосовой фильтр легко выполняется в виде интегральной пьезокерамической конструкции на ниобатe лития. Перестройка частоты в ЛЧМ-гетеродина 7 по линейному закону в диапазоне 360 ... 120 МГц за 80 мкс осуществляется по схеме частотно-фазовой автоподстройки на основе делителя с переменным коэффициентом деления частоты СВЧ-генератора в диапазоне 1860 ... 1620 МГц с последующим переносом СВЧ-колебания к заданному диапазону гетеродинированием.

Предлагаемое изобретение может найти применение также в анализаторах спектра высокой чувствительности, в измерительной технике, системах передачи информации, в сверхдальней космической связи и управлении лазерным излучением. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



СОГЛАСОВАННЫЙ ФИЛЬТР, содержащий последовательно соединенные полосовой фильтр, смеситель и дисперсионную линию задержки, а также линейно-частотно-модулированный гетеродин, подключенный к второму входу смесителя, отличающийся тем, что, с целью упрощения устройства, в него введены последовательно соединенные компенсирующий усилитель и ультразвуковая линия задержки на поверхностных волнах, выходной электрод которой выполнен в виде монопериодической и непрерывной структуры с продольной длиной вдоль вектора распространения ультразвукового цуга волн, равной

lвых = N нV ,

где н - длительность входного радиоимпульса;

N - целое число >> 1;

V - скорость распространения поверхностной ультразвуковой волны,

причем выходной электрод соединен с входом полосового фильтра через компенсирующий усилитель, а полоса пропускания f полосового фильтра соответствует условию f = 1 / N н


ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к лазерным квантовым генераторам, а именно лазеры и лазерное оборудование:

- твердотельные полупроводниковые лазеры

- газовые лазеры

- химические лазеры

- практическое применение в промышленности, науке и в быту газовых, твердотельных и химических лазеров.


Лазеры. Лазерное оборудование






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+газовый -лазер".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "лазер" будут найдены слова "лазеры", "лазерный" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("лазер!").



Рейтинг@Mail.ru