ГЕНЕРАТОР СВЕРХВЫСОКОЧАСТОТНОГО ИЗЛУЧЕНИЯ

ГЕНЕРАТОР СВЕРХВЫСОКОЧАСТОТНОГО ИЗЛУЧЕНИЯ


RU (11) 2195738 (13) C2

(51) 7 H01J25/08 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 25.10.2007 - действует 

--------------------------------------------------------------------------------

(21) Заявка: 2000118578/09 
(22) Дата подачи заявки: 2000.07.17 
(24) Дата начала отсчета срока действия патента: 2000.07.17 
(43) Дата публикации заявки: 2002.08.10 
(45) Опубликовано: 2002.12.27 
(56) Список документов, цитированных в отчете о поиске: APPL. PHYS. LETT. 60(21), 25.05.1992, с.2580-2600. RU 2151438 C1, 20.06.2000. US 5504796 А, 20.04.1996. 
(71) Заявитель(и): Российский федеральный ядерный центр Всероссийский научно- исследовательский институт экспериментальной физики; Министерство Российской Федерации по атомной энергии 
(72) Автор(ы): Алехин Б.В.; Воронин В.В.; Воронов С.Л.; Коваленко О.И.; Павлов С.С.; Селемир В.Д. 
(73) Патентообладатель(и): Российский федеральный ядерный центр Всероссийский научно- исследовательский институт экспериментальной физики; Министерство Российской Федерации по атомной энергии 
Адрес для переписки: 607190, Нижегородская обл., г. Саров, пр. Мира, 37, РФЯЦ- ВНИИЭФ, нач. ОПИНТИ А.А.Кимачеву 

(54) ГЕНЕРАТОР СВЕРХВЫСОКОЧАСТОТНОГО ИЗЛУЧЕНИЯ 

Изобретение относится к технике СВЧ и может быть использовано при разработке мощных широкополосных генераторов СВЧ излучения для целей радиолокации, накачки рабочих сред газовых лазеров и т.д. Технический результат: повышение кпд генератора в 4 раза обеспечивается выполнением камеры формирования и вывода излучения полностью или ее части, расположенной за анодом в сторону вывода излучения, из диэлектрика, прозрачного для СВЧ-излучения. 1 з.п.ф-лы, 1 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к технике СВЧ и может быть использовано при разработке мощных широкополосных генераторов СВЧ-излучения.

Известны СВЧ-генераторы на основе систем с виртуальным катодом, содержащие источник питания, источник электронов, включающий расположенные в вакуумированном корпусе катод и анод, прозрачный для электронов, и следующую за источником электронов вакуумную камеру формирования и вывода излучения. (М. Haworth, В. Anderson, et al., "Operation of repetitively pulsed virtual cathode oscillators on the TEMPO pulser"// IEEE Trans. on Plasma Science, 1991, vol. 19, 4, pp. 655-659) [I], H.Sze, J. Benford, et al., "Dynamics of a virtual cathode oscillator driven by a pinched diode"// Phys. Fluids, 29 (11), Nov. 1986, pp.3873-3880)[2].

При инжекции сильноточного электронного пучка с током выше некоторого значения за анодом в вакуумной камере формирования и вывода излучения объемный заряд пучка создает провисание потенциала, которое обуславливает торможение и отражение части электронов в сторону реального катода. Эта область провисания потенциала и называется виртуальным катодом (ВК). Источником СВЧ-колебаний в таких системах являются осцилляции электронов в потенциальной яме, образованной реальным и виртуальным катодом, и колебания положения самого ВК.

Недостатком известных конструкций СВЧ-генераторов на основе систем с ВК является низкий уровень эффективности преобразования энергии электронного пучка в излучение (кпд СВЧ-генератора). Указанный недостаток связан с рядом причин, одна из которых состоит в том, что кроме электронов, отражаемых от ВК в сторону реального катода и совершающих множество колебаний, часть электронов покидает область ВК и уходит на стенки вакуумной камеры. Во всех конструкциях виркаторов, известных авторам, вакуумная камера формирования и вывода излучения выполнена из токопроводящего материала, что существенным образом увеличивает количество уходящих из области виртуального катода электронов.

Следует отметить, что геометрия и размеры проводящей вакуумной камеры в комбинации с параметрами пучка существенным образом влияют на условия формирования ВК, кпд генератора и параметры излучения, что также можно отнести к недостаткам прототипа.

За прототип выбран СВЧ-генератор (К. Kostov, N. Nikolov, et al., "Experimental study of virtual cathode oscillator in uniform magnetic field"//, Appl. Phys. Lett., 60 (21), 25 May 1992, pp.2598-2600). Прототип состоит из источника питания, источника электронов в виде цилиндрического вакуумированного корпуса, в котором соосно размещены катод и анод, прозрачный для электронов, и следующей за источником электронов вакуумной камеры формирования и вывода СВЧ-излучения. Анод изготовлен из металлической сетки. Эксперименты выполнены как с использованием ведущего магнитного поля, так и без него.

При инжекции электронного пучка в вакуумную камеру за анодом образуется ВК и часть электронов совершает колебательное движение между реальным и виртуальным катодами. Энергия этих электронов передается СВЧ-полю. Параметры и положение ВК осциллируют во времени и также вносят вклад в энергию излучения.

В генераторе, выполненном по схеме прототипа, камера формирования и вывода излучения представляет собой высокодобротный резонатор. В связи с тем, что колебания электронов между реальным и виртуальным катодами осуществляются практически вдоль оси системы, а направление излучения перпендикулярно направлению их движения, то количество отражений излучения от стенок резонатора до выхода из системы велико. Это приводит к большим потерям излучения внутри резонатора, что является одной из причин низкого кпд генератора.

Кроме того, в данном генераторе вакуумная камера формирования и вывода излучения выполнена из металла и граница области ВК располагается достаточно близко к стенке камеры. Поскольку потенциал ВК отрицателен и сравним с потенциалом реального катода, создаются условия быстрого ухода электронов из области ВК (вплоть до пробоя). Это снижает плотность электронов в ВК, что приводит к уменьшению энергии генерации СВЧ-излучения и, следовательно, кпд генератора.

Таким образом, недостатком генератора, выполненного по схеме прототипа, является низкий кпд (~1%) из-за быстрого ухода электронов на стенки вакуумной камеры из области ВК и потерь излучения за счет многократного отражения излучения от стенок. Низкий кпд существенным образом ограничивает практическое применение такого генератора.

Задача состоит в разработке СВЧ-генератора, который может быть использован в качестве источника мощных импульсов СВЧ-излучения. Приборы, способные генерировать такие импульсы, могут использоваться для накачки рабочих сред газовых лазеров, радиолокации, нагрева плазмы в термоядерных исследованиях и т.д.

Ожидаемым техническим результатом предлагаемого решения является повышение кпд генератора.

Технический результат достигается тем, что в отличие от известного СВЧ-генератора на основе ВК, содержащего источник питания, источник электронов, включающий расположенные в вакуумированном корпусе катод и анод, прозрачный для электронов, и следующую за источником электронов вакуумную камеру формирования и вывода излучения, в предлагаемом устройстве камера полностью или ее часть, расположенная за анодом в сторону вывода излучения, выполнена из диэлектрика, прозрачного для СВЧ-излучения.

Кроме того, камера формирования и вывода излучения может быть выполнена с произвольной формой поверхности.

Ток электронов Iе, проходящий через анод, состоит из двух токов: Iе= Iпр+Iотр,

где Iпр - ток, проходящий через камеру формирования и вывода излучения и не участвующий в формировании виртуального катода и, следовательно, СВЧ-излучения.

Iотр - отраженный ток, ответственный за формирование ВК и СВЧ-излучения.

Геометрические размеры камеры формирования и вывода излучения и материал, из которого она изготовлена, определяют предельный ток электронов Iпр, который может проходить через данную камеру:

Iпр=k1/ln(D/d);

D - диаметр камеры формирования и вывода излучения,

d - диаметр электронного пучка,

k - коэффициент пропорциональности.

Из приведенной формулы видно, что при увеличении D предельный ток электронов Iпр уменьшается. В случае изготовления камеры формирования и вывода излучения из диэлектрика, полностью или ее части за анодом в сторону вывода излучения, D стремиться к бесконечности. В этом случае Iпр стремится к нулю, а значит количество электронов, участвующих в генерации Iотр, увеличивается, что приводит к увеличению кпд генератора. Кроме того, СВЧ-излучение будет выводиться через всю поверхность камеры или ее части за анодом без отражения в силу прозрачности диэлектрика для СВЧ-излучения. В предлагаемой конструкции единственным каналом потерь электронов является осаждение их на анод. Так как прозрачность анода ~90%, вероятность преждевременного ухода электронов незначительна.

Важной с точки зрения технического результата является выполнение определенной части заявляемой системы, включающей источник питания, источник электронов, камеру формирования и вывода излучения, из диэлектрика, прозрачного для СВЧ-излучения, а именно: части системы за анодом в сторону вывода излучения. Здесь возможны варианты, когда камера формирования и вывода излучения полностью либо ее часть, расположенная за анодом в сторону вывода излучения, выполнены из диэлектрика. Эти варианты связаны с различным положением анода относительно камеры. Анод может быть размещен в плоскости соединения камеры формирования и вывода излучения с вакуумируемым объемом источника электронов, включающим катод и анод, а может быть размещен внутри объема камеры формирования и вывода излучения. Первый случай соответствует выполнению камеры полностью из диэлектрика. Во втором случае (представлен на чертеже) принципиальным является выполнение части камеры, расположенной за анодом (чертеж, плоскость А-А) в сторону вывода излучения, из диэлектрика; для части камеры до анода выбор материала несущественен. Она может быть выполнена как из диэлектрика, так и из металла.

Все это в совокупности приведет к увеличению кпд генератора.

Следует отметить, что при изготовлении камеры формирования и вывода излучения из диэлектрика, прозрачного для СВЧ-излучения, форма поверхности камеры не имеет принципиального значения. В дополнение к основному результату заметим, что она может быть выполнена в виде любой поверхности, наиболее удобной с точки зрения технологичности изготовления. Обязательным является обеспечение в камере необходимого вакуума.

На чертеже представлено схематичное изображение заявляемого генератора, где:

1 - источник питания,

2 - вакуумированный корпус источника электронов,

3 - катод,

4 - анод,

5 - виртуальный катод,

6 - камера формирования и вывода излучения,

А-А - плоскость анода.

Заявляемый СВЧ-генератор, выполненный по схеме чертежа, реализован на практике. Этот генератор содержит высоковольтный источник питания 1, представляющий собой 12 - каскадный низкоиндуктивный генератор Аркадьева-Маркса, металлический вакуумированный корпус источника электронов 2, расположенные в нем плоский графитовый катод 3 диаметром 30 мм, анод 4 из сетки, прозрачной для электронов, и следующую за источником электронов вакуумную камеру формирования и вывода излучения 6. Зазор анод - катод равен 3,0 мм. Длина и диаметр камеры формирования и вывода излучения варьировалась соответственно в пределах 7. . ..30 мм и 55....100 мм и изготавливалась камера полностью (до плоскости А-А и после нее) из капролона или оргстекла, прозрачных для СВЧ-излучения. Виртуальный катод 5 образуется в объеме камеры формирования и вывода излучения. Параметры инжектируемого электронного пучка следующие: энергия электронов ~200 кэВ, ток пучка ~6 кА и длительность импульса ~40 нc на полувысоте.

Генератор СВЧ-излучения работает следующим образом. Импульс высокого напряжения отрицательной полярности от источника питания 1 прикладывается к катоду 3. Корпус источника электронов 2, анод 4 электрически соединены друг с другом, заземлены и соединены с положительным полюсом источника питания. В результате взрывной эмиссии с поверхности катода формируется электронный поток, который, ускоряясь, проходит сквозь анод и образует в камере формирования и вывода излучения виртуальный катод 5.

Захваченные в потенциальную яму между реальным и виртуальным катодом электроны совершают колебательное движение и излучают электромагнитную волну, которая покидает систему через поверхность камеры формирования и вывода излучения 6. Длина волны генерируемого излучения 2....5 см, а длительность импульса - 20 нc на полувысоте.

В данном случае кпд генератора вырос в 4 раза по сравнению с генератором, выполненным по схеме прототипа. Как показали предварительные эксперименты, данное техническое решение после проведения оптимизации всех параметров заявленного генератора СВЧ-излучения позволит увеличить кпд до 5...10%. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



1. Генератор СВЧ-излучения, содержащий источник питания, источник электронов, включающий расположенные в вакуумированном корпусе катод и анод, прозрачный для электронов, и следующую за источником электронов вакуумную камеру формирования и вывода излучения, отличающийся тем, что камера полностью или ее часть, расположенная за анодом в сторону вывода излучения, выполнена из диэлектрика, прозрачного для СВЧ-излучения.

2. Генератор СВЧ-излучения по п. 1, отличающийся тем, что камера формирования и вывода излучения выполнена с произвольной формой поверхности.


ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к лазерным квантовым генераторам, а именно лазеры и лазерное оборудование:

- твердотельные полупроводниковые лазеры

- газовые лазеры

- химические лазеры

- практическое применение в промышленности, науке и в быту газовых, твердотельных и химических лазеров.


Лазеры. Лазерное оборудование






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+газовый -лазер".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "лазер" будут найдены слова "лазеры", "лазерный" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("лазер!").



Рейтинг@Mail.ru