МОНОКРИСТАЛЛИЧЕСКИЙ ЛАЗЕРНЫЙ МАТЕРИАЛ НА ОСНОВЕ ОКСИСИЛИКАТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

МОНОКРИСТАЛЛИЧЕСКИЙ ЛАЗЕРНЫЙ МАТЕРИАЛ НА ОСНОВЕ ОКСИСИЛИКАТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ


RU (11) 2186162 (13) C2

(51) 7 C30B29/34, C30B15/00, H01S3/16 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 25.10.2007 - действует 

--------------------------------------------------------------------------------

(21) Заявка: 99115061/12 
(22) Дата подачи заявки: 1999.07.13 
(24) Дата начала отсчета срока действия патента: 1999.07.13 
(45) Опубликовано: 2002.07.27 
(56) Список документов, цитированных в отчете о поиске: Каминский А.А. и др. Многоуровневые функциональные схемы кристаллических лазеров. - М.: Наука, 1989, с.268-270. Каминский А.А. Лазерные кристаллы. - М.: Недра, 1975, с.12, 173-174. US 5311532 А, 10.05.1994. US 5173911 А, 22.12.1992. 
(71) Заявитель(и): Кубанский государственный университет 
(72) Автор(ы): Ворошилов И.В.; Лебедев В.А. 
(73) Патентообладатель(и): Кубанский государственный университет 
Адрес для переписки: 350040, г.Краснодар, ул. Ставропольская, 149, КГУ, группа интеллектуальной собственности 

(54) МОНОКРИСТАЛЛИЧЕСКИЙ ЛАЗЕРНЫЙ МАТЕРИАЛ НА ОСНОВЕ ОКСИСИЛИКАТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ 

Изобретение относится к материалам для квантовой электроники, в частности, к монокристаллам для иттербиевых лазеров с длиной волны около 1,064 мкм, перестраиваемых в диапазоне 1-1,08 мкм с диодной накачкой, и для получения лазерной генерации в режиме сверхкоротких импульсов. С целью адаптации иттербиевых лазеров к существующей элементной базе предлагается монокристаллический лазерный материал на основе оксисиликатов редкоземельных элементов с трехвалентным иттербием в качестве активатора в соответствии с химической формулой MRe4-xYbx(SiO4)3O, где М - кальций (Са) или стронций (Sr), Re - иттрий (Y), гадолиний (Gd), лантан (La); а 0,01х4, излучающий на длине волны около 1,064 мкм, с полушириной полосы люминесценции около 70 нм, длительностью лазерных импульсов порядка 10 фс, полушириной люминесцентной области перестройки 40 нм. 1 табл., 3 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к материалам для квантовой электроники, в частности, к монокристаллам для иттербиевых лазеров с длиной волны около 1,064 мкм, перестраиваемых в диапазоне 1-1,08 мкм с диодной накачкой и для получения лазерной генерации в режиме сверхкоротких импульсов.

Известны монокристаллические лазерные материалы, показывающие эффект генерации излучения с длиной волны около 1,064 мкм [1]. Среди них выделяется Nd: Y3Al5O12 (Nd: YAG) как наиболее эффективный и технологичный. Лазеры на кристаллах Nd:YAG, излучающие на длине волны 1,064 мкм, получили широчайшее распространение во всем мире. Но структура лазерных уровней иона Nd3+ не позволяет достичь предельной квантовой эффективности преобразования излучения накачки из-за стоксовых потерь, потерь на перепоглощение и кооперативных эффектов. По сравнению с неодимом иттербий имеет меньший стоксов сдвиг, а следовательно, позволяет достигать большей предельной эффективности преобразования (оптическая квантовая эффективность 91%). Большое радиационное время перехода и малое сечение излучения препятствуют суперлюминесценции. Большие потери на длине волны генерации по сравнению с неодимом, обусловленные термическим заселением соответствующего штарковского компонента нижнего мультиплета, судя по некоторым сообщениям [2], сказываются положительно на качестве пучка лазеров с диодной накачкой.

Среди материалов, активированных ионами трехвалентного иттербия, выделяются как наиболее эффективный Yb:Y3Al5O12 (Yb:YAG) [2,3], позволяющий получать генерацию на ионах иттербия с длиной волны 1,03 мкм. К недостаткам этого материала относится большое расхождение в длине волны генерации с наиболее распространенными на данный момент неодимовыми лазерами, излучающими на длинах волн около 1,064 мкм, что осложняет адаптацию существующего оборудования к новой длине волны излучения.

Наиболее близким к заявляемому материалу аналогом является монокристаллический лазерный материал, соответствующий формуле MRe4-xNdx(SiO4)3O, где М - кальций (Са) или стронций (Sr), Re - иттрий (Y), гадолиний (Gd), лантан (La) [1] , позволяющий получать генерацию с длиной волны 1,061 мкм. К недостаткам этого материала относятся концентрационное тушение люминесценции и высокие стоксовы потери, что обусловлено наличием ионов Nd3+

Технической задачей является получение монокристаллического лазерного материала на длине волны вблизи 1,064 мкм, обладающего малым стоксовым сдвигом и широкими полосами люминесценции.

Для решения технической задачи предлагается монокристаллический материал на основе МRe4-xYbx(SiO4)3О, где М - кальций (Са) или стронций (Sr), Re - иттрий (Y), гадолиний (Gd), лантан (La), а 0,01х<4.

Выбор в качестве активатора ионов трехвалентного иттербия позволяет получить монокристаллический материал с длиной волны генерации вблизи 1,064 мкм, полушириной люминесцентной перестройки порядка 40 нм.

На фиг. 1 представлены спектры люминесценции a) SrY3,7Yb0,3(SiO4)3O(Yb: SYS) и б) СаGd3,7Yb0,3(SiO4)3О(Yb:CGS); на фиг.2 - спектр коэффициента усиления, построенный для лазерного монокристалла SrY3,7Yb0,3(SiO4)3O; на фиг.3 - спектр сечения усиления, построенный для лазерного монокристалла СаGd3,97Yb0,03(SiO4)3О.

Кристаллы выращены методом Чохральского из иридиевого тигля диаметром 30 мм со скоростью 2 мм/ч.

Пример 1.

Смесь мелкодисперсных высокочистых (марка ОСЧ) оксидов, г:

Оксид стронция (SrO) - 7,3454

Оксид иттрия (Y2О3) - 29,6131

Оксид иттербия (III) (Yb2О3) - 4,1904

Оксид кремния (SiO2) - 12,7790

тщательно перемешивали, прессовали в таблеты и помещали в муфельную печь, где при температуре 920oС проводили синтез в твердой фазе в течение 30 ч. После чего просинтезированное вещество помещалось в тигель и расплавлялось (Тплавл=1830oС). Выращивание кристалла осуществлялось методом Чохральского со скоростью вытягивания 2 мм/сут. В результате был получен прозрачный бесцветный кристалл высокого оптического качества высотой 11 мм и диаметром 10 мм химической формулы SrY3,7Yb0,3(SiO4)3O. Плотность кристалла, определенная методом гидростатического взвешивания, составила 5,01 г/см3.

Пример 2.

Смесь мелкодисперсных высокочистых (марка ОСЧ) веществ, г:

Карбонат кальция (СаСО3) - 7,3320

Оксид гадолиния (Gd2О3) - 52,7912

Оксид иттербия (Yb2О3) - 0,3302

Оксид кремния (SiO2) - 13,1481

тщательно перемешивали, прессовали в таблеты и помещали в муфельную печь, где при температуре 950oС проводили синтез в твердой фазе в течение 30 ч. После чего просинтезированное вещество помещалось в тигель и расплавлялось (Тплавл=1850oС). Выращивание кристалла осуществлялось методом Чохральского со скоростью вытягивания 2 мм/сут. В результате был получен прозрачный бесцветный кристалл высокого оптического качества высотой 11 мм и диаметром 12 мм химической формулы СаGd3,97Yb0,03(SiO4)3О. Плотность кристалла, определенная методом гидростатического взвешивания, составила 6,18 г/см3.

Аналогично были выращены кристаллы, химические формулы которых приведены в таблице.

Если в предлагаемом материале брать иттербия трехвалентного со стехиометрическим коэффициентом х<0,01, то низкая плотность возбуждений в среде, обусловленная низкой концентрацией лазерных ионов, не позволит превысить потери на паразитное поглощение матрицы-основы и говорить о таком материале как о лазерном не имеет смысла. С другой стороны, приближение значений х к 4 (образцы 4, 8, 18, 15) позволяет повысить коэффициент поглощения на длине волны 1,064 мкм и появляется возможность использования предлагаемого материала в качестве пассивных затворов для лазеров, активированных ионами Nd3+. Этому способствуют наличие межштарковского перехода на длине волны вблизи 1,064 мкм, двухуровневая система ионов Yb3+, высокое время жизни лазерного уровня и стойкость к высокоэнергетичному лазерному излучению.

Среди кристаллов, приведенных в таблице, выделяются материалы, соответствующие формуле CaY1-xYbx(Si04)30 ( 1-4). Самое высокое сечение лазерного перехода в представленной группе, высокий коэффициент вхождения Yb3+, близкий к 1, и высокое оптическое качество таких кристаллов делают его наиболее перспективным.

Образцы 5-7, 9-12, 14, 16, 17 также имели высокое оптическое качество.

Свежевыращенные образцы представляли собой були диаметром 10-12 мм и длиной 10-12 мм, бесцветные, с гладкой блестящей поверхностью. Для спектрально-люминесцентных измерений вырезали пластины 4х5 мм2 и от 0,1 до 3 мм толщиной.

Спектры поглощения и люминесценции измерялись при помощи дифракционного монохроматора МДР-23 (с решеткой 600 штр/мм) с обратной линейной дисперсией 2,6 нм/мм и шириной щелей не более 0,15 мм [4]. Спектры люминесценции поправлялись на спектральную чувствительность фотоприемника.

Спектры эффективного сечения усиления монокристаллов эф() с учетом реабсорбции рассчитывались по формуле

эф() = люм()-(1-)погл(),

где = n/N - соотношение населенностей верхнего и нижнего уровней,

люм() - сечение люминесценции и

погл() - сечение поглощения [5].

Оценка длительности импульса производилась с использованием соотношения неопределенностей Гейзенберга Eth. где E - неопределенность по энергии, описывается шириной спектра люминесценции, h - постоянная Планка, тогда t - примерная длительность лазерного импульса в режиме генерации сверхкоротких импульсов.

Указанные материалы обладают спектром люминесценции с полушириной не менее 70 нм (фиг.1). Т.к. линии люминесценции представлены сильно уширенными перекрывающимися полосами, то становится возможным провести оценку длительности импульса лазера при работе в режиме генерации сверхкоротких импульсов, результаты оценки дают длительность импульса порядка 10 фс.

Из фиг. 2 и 3 видно, что при небольшом уровне инверсии (соотношение населенностей верхнего и нижнего уровней n/N=0,05) положительное усиление возникает в первую очередь на длине волны 1,064 мкм, а затем уже при соотношении населенностей 0,2 люминесцентная область перестройки составляет 1-1,08 мкм.

Спектры усиления, построенные для остальных материалов из таблицы, аналогичны приведенным. Разницу составляет лишь длина волны положительного усиления при минимальном значении инверсии населенностей, т.к. для материалов, содержащих в качестве Re-La, длина волны генерации 1,061 мкм при той же полуширине области люминесцентной перестройки.

Таким образом, предлагаемый монокристаллический лазерный материал по своим характеристикам представляет интерес для создания иттербиевых лазеров с длиной волны около 1,064 мкм, что является более предпочтительным, чем лазеры с другими длинами волн для адаптации существующей элементной базы к новым материалам. Предлагаемый монокристаллический лазерный материал обладает уникальной, на сегодняшний день, полушириной полосы люминесценции - около 70 нм, что позволяет получить генерацию лазерных импульсов с длительностью порядка 10 фс, а также люминесцентной областью перестройки порядка 40 нм.

Источники информации

1. А. А. Каминский, Б.М. Антипенко. Многоуровневые функциональные схемы кристаллических лазеров. М.: Наука, 1989, с. 268-269, с. 270.

2. J.Wallace Laser Focus World December 1998, p. 15.

3. T.Y.Fan, J. Quantum Electron., 29, 1457-1459 (1993).

4. А. Н. Зайдель, Г.В. Островская, Ю.И. Островский. Техника и практика спектроскопии. М.: Наука, 1976, с. 108-112.

5. А.А. Каминский Лазерные кристаллы. М.: Наука, 1975, с. 5-8. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



Монокристаллический лазерный материал на основе оксисиликатов редкоземельных элементов, отличающийся тем, что он дополнительно содержит в качестве активатора трехвалентный иттербий в соответствии с формулой

MRe4-xYbx(SiO4)3O,

где М - кальций (Са) или стронций (Sr);

Re - иттрий (Y), гадолиний (Gd), лантан (La);

а 0,01х<4.


ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к лазерным квантовым генераторам, а именно лазеры и лазерное оборудование:

- твердотельные полупроводниковые лазеры

- газовые лазеры

- химические лазеры

- практическое применение в промышленности, науке и в быту газовых, твердотельных и химических лазеров.


Лазеры. Лазерное оборудование






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+газовый -лазер".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "лазер" будут найдены слова "лазеры", "лазерный" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("лазер!").



Рейтинг@Mail.ru