ЛАЗЕР С ПРЕОБРАЗОВАНИЕМ ЧАСТОТЫ

ЛАЗЕР С ПРЕОБРАЗОВАНИЕМ ЧАСТОТЫ


RU (11) 2107369 (13) C1

(51) 6 H01S3/109 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 25.10.2007 - прекратил действие 

--------------------------------------------------------------------------------

(21) Заявка: 94037144/25 
(22) Дата подачи заявки: 1994.09.26 
(45) Опубликовано: 1998.03.20 
(56) Список документов, цитированных в отчете о поиске: 1. SU, авторское свидетельство, 420028, кл. H 01 S 3/10, 1970. 2. Заявка EP, 0450557, кл. H 01 S 3/109, 1991. 
(71) Заявитель(и): Коваль Юрий Петрович; Кобякова Марина Шаевовна; Кирилович Олег Юрьевич; Гармаш Владимир Михайлович; Гармаш Михаил Владимирович 
(72) Автор(ы): Коваль Юрий Петрович; Кобякова Марина Шаевовна; Кирилович Олег Юрьевич; Гармаш Владимир Михайлович; Гармаш Михаил Владимирович 
(73) Патентообладатель(и): Коваль Юрий Петрович; Кобякова Марина Шаевовна; Кирилович Олег Юрьевич; Гармаш Владимир Михайлович; Гармаш Михаил Владимирович 

(54) ЛАЗЕР С ПРЕОБРАЗОВАНИЕМ ЧАСТОТЫ 

Использование: в квантовой электронике и нелинейной оптике. Сущность изобретения: лазер содержит излучатель основной частоты с источником излучения, у которого длина зоны излучения много больше ее ширины, и нелинейный кристалл-преобразователь частоты. 1 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к квантовой электронике и нелинейной оптике.

Известно, что для ряда практических применений необходимы когерентные источники монохроматического излучения с короткой длиной волны, получение которого "прямым" путем затруднено и которое получают путем преобразования исходного излучения с большей длиной волны с использованием нелинейной оптики.

Частота электромагнитного излучения эффективно преобразуется только в определенном направлении, соответствующем фазовому согласованию основной волны и гармоники (направление синхронизма). Поэтому к параметрам излучения генератора основной частоты предъявляют жесткие требования. Оно должно быть монохроматичным, иметь малую расходимость, стабильное направление распространения и длину волны. Например, для эффективного удвоения частоты в кристалле дигидрофосфата калия (КДП) требуется расходимость излучения порядка нескольких минут. Последнее обстоятельство делает неэффективным преобразование непосредственно излучения полупроводниковых лазеров вследствие его большой расходимости, но поскольку потребность в таком преобразовании имеется, то предлагаются различные технические решения, позволяющие его осуществлять.

Известно устройство для преобразования частоты, содержащее лазер, излучающий основную волну, и нелинейный кристалл в качестве генератора второй гармоники (ГВГ) [1]. Для обеспечения возможности использования в качестве источника основного излучения полупроводникового лазера, имеющего расходимость излучения до десятков градусов, нелинейный кристалл помещают в тепловое поле с продольным градиентом. В результате этого различные части кристалла будут иметь различные условия выполнения синхронизма, что повышает эффективность преобразования.

Недостатком известного устройства является необходимость высокоточной температурной стабилизации теплового поля и в том числе сохранение стабильного градиента, поскольку любые их изменения влияют на условия синхронизма и, в конечном итоге, на эффективность ГВГ, а значит на стабильность получаемого излучения.

Наиболее близким к заявляемому изобретению по своей технической сущности и достигаемому результату является известный лазер с преобразованием частоты, содержащий излучатель основной частоты и нелинейный кристалл [2].

Недостатком известного устройства является относительно низкий коэффициент преобразования частоты излучения.

Заявляемое изобретение направлено на повышение эффективности преобразования частоты излучения.

Указанная задача достигается тем, что лазер содержит излучатель основной частоты с протяженным источником излучения и нелинейный кристалл - преобразователь частоты.

Отличительным признаком заявляемого лазера является выполнение излучателя с протяженным источником излучения, а именно таким, что длина зоны излучения много больше ее ширины.

Выполнение источника излучения протяженным позволяет повысить коэффициент преобразования частоты. Экспериментально установлено, что если в качестве излучателя основной частоты используется известный полупроводниковый лазер, работающий в непрерывном режиме, то преобразуется во вторую гармонику приблизительно 0,1% основного излучения, а при работе в импульсном режиме - до 3 - 6%. При выполнении же источника излучения протяженным установлено, что коэффициент преобразования основного излучения во вторую гармонику при работе в непрерывном режиме возрастает до 0,2%, а при работе в импульсном режиме - до 8 - 10%. Протяженный источник излучения создается путем использования набора линейки полупроводниковых лазеров, размещаемой на общем основании и подключаемой к общему источнику питания. Хотя конструктивно такой излучатель представляет набор дискретных источников излучения, таковым он является только в ближней зоне.

Вследствие значительной расходимости излучения от каждого отдельного полупроводникового лазера излучение от линейки лазеров воспринимается уже на расстоянии нескольких миллиметров как излучение от протяженного излучателя с неравномерным распределением интенсивности внутри него и соответственно преобразуется как таковой оптическими системами.

На чертеже схематично показан заявляемый лазер с преобразованием частоты.

Лазер представляет собой излучатель 1, выполненный в виде линейки полупроводниковых лазеров 2, например, типа ИЛПН-112, излучающих на длине волн = 810 нм и имеющих мощность излучения 250 мВт с расходимостью излучения 8 - 100 в плоскости, проходящей через линейку лазеров. В частном случае реализации излучатель может быть выполнен и в виде одиночного полупроводникового лазера с максимально возможным линейным размером излучающего пятна. Лазеры имеют размер в плоскости линейки 200 мкм и размещены с зазором 5 мкм. При этом излучающие переходы лазеров могут быть ориентированы как вдоль плоскости, проходящей через линейку, так и перпендикулярно ей. За излучателем (по ходу луча) расположена оптическая система 3 (показана на чертеже условно), обеспечивающая преобразование расходящегося луча от излучателя в сходящийся в объеме нелинейного кристалла-преобразователя 4. В качестве нелинейного кристалла могут использоваться любые из числа известных: дигидрофосфат калия, ниобат лития, ниобат бария-стронция, ниобат иода и т.д.

Лазер работает следующим образом.

От источника питания напряжение подается на каждый из полупроводниковых лазеров 2, смонтированных в излучатель 1. В результате лазеры испускают основное монохроматическое излучение с длиной волны = 810 нм. Затем основное излучение оптической системой 3 фокусируется на нелинейный кристалл 4. После прохождения нелинейного кристалла излучение содержит как основное излучение с = 810 нм, так и с удвоенной частотой ( = 405 нм) и используется по назначению с последующей обработкой или без нее. (Излучение может отфильтровываться, фокусироваться, расфокусироваться и т.п.). 


ФОРМУЛА ИЗОБРЕТЕНИЯ



Лазер с преобразованием частоты, содержащий излучатель основной частоты и нелинейный кристалл-преобразователь, отличающийся тем, что длина зоны излучения в излучателе много больше ее ширины.


ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к лазерным квантовым генераторам, а именно лазеры и лазерное оборудование:

- твердотельные полупроводниковые лазеры

- газовые лазеры

- химические лазеры

- практическое применение в промышленности, науке и в быту газовых, твердотельных и химических лазеров.


Лазеры. Лазерное оборудование






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+газовый -лазер".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "лазер" будут найдены слова "лазеры", "лазерный" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("лазер!").



Рейтинг@Mail.ru