ИМПУЛЬСНЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР С ПРЕОБРАЗОВАНИЕМ ДЛИНЫ ВОЛНЫ ИЗЛУЧЕНИЯ НА ВЫНУЖДЕННОМ КОМБИНАЦИОННОМ РАССЕЯНИИ

ИМПУЛЬСНЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР С ПРЕОБРАЗОВАНИЕМ ДЛИНЫ ВОЛНЫ ИЗЛУЧЕНИЯ НА ВЫНУЖДЕННОМ КОМБИНАЦИОННОМ РАССЕЯНИИ


RU (11) 2115983 (13) C1

(51) 6 H01S3/30 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 25.10.2007 - действует 

--------------------------------------------------------------------------------

(21) Заявка: 97115538/25 
(22) Дата подачи заявки: 1997.09.18 
(45) Опубликовано: 1998.07.20 
(56) Список документов, цитированных в отчете о поиске: 1. WO, заявка, 92/15137, H 01 S 3/30, 1992. 2. Басиев Т.Т. и др. Квантовая электроника, 1987, т.14, с.2452. 
(71) Заявитель(и): Устименко Николай Степанович; Гулин Александр Владимирович 
(72) Автор(ы): Устименко Николай Степанович; Гулин Александр Владимирович 
(73) Патентообладатель(и): Устименко Николай Степанович; Гулин Александр Владимирович 

(54) ИМПУЛЬСНЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР С ПРЕОБРАЗОВАНИЕМ ДЛИНЫ ВОЛНЫ ИЗЛУЧЕНИЯ НА ВЫНУЖДЕННОМ КОМБИНАЦИОННОМ РАССЕЯНИИ 

Изобретение относится к лазерной технике, в частности к импульсным твердотельным лазерам, работающим в режиме модуляции добротности резонатора. Импульсный твердотельный лазер содержит оптический резонатор, внутри которого установлены кристаллический активный элемент и модулятор добротности, активный элемент выполнен из материала, преобразующего генерируемую на рабочем переходе длину волны излучения в стоксовые компоненты, резонатор образован глухим зеркалом, полностью отражающим излучение с длиной волны первой стоксовой компоненты и максимально пропускающим излучение с длинами волн, соответствующими нерабочим переходам активного элемента, выходное зеркало, полностью отражающее излучение, генерируемое на длине волны рабочего перехода активного элемента, частично пропускающим излучение на длине волны первой стоксовой компоненты и максимально пропускающим излучение с длинами волн, соответствующими нерабочим переходам активного элемента и второй стоксовой компоненты. При этом модулятор добротности выполнен на основе электрооптического элемента и поляризатора или на основе насыщающегося фильтра со временем релаксации, превышающим более чем на порядок время обхода резонатора, и максимально пропускающий излучение с длиной волны первой стоксовой компоненты. 1 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к области лазерной техники, в частности к импульсным твердотельным лазерам, работающим в режиме модуляции добротности резонатора, и может быть использовано для получения мощных импульсов лазерного излучения в наносекундном диапазоне длительности импульсов в ближнем инфракрасном, в том числе в безопасном для человеческого глаза, спектральном диапазоне, для целей нелинейной оптики, лазерной дальнометрии, экологического мониторинга окружающей среды и т.д.

В настоящее время наблюдается возрастание интереса к вынужденному комбинационному рассеянию (ВКР), как к весьма эффективному способу преобразования длины волны излучения.

Метод ВКР уже применялся для решения важной практической задачи - преобразования длины волны наиболее широко применяемых лазеров на неодимосодержащих средах (1,05 - 1,08 мкм) в спектральную область, безопасную для человеческого глаза (1,45 - 2,5 мкм).

Так, например, известен лазер Y3Al5O12:Nd3+ с ячейкой ВКР, наполненной метаном и помещенной вне резонатора лазера, в которой осуществляется преобразование лазерного излучения с длиной волны 1,06 мкм в первую стоксовую компоненту с длиной волны 1,54 мкм [1]. Однако коэффициент преобразования излучения лазера в стоксовую компоненту не превышает ~30%, что соответственно уменьшает КПД лазера в 3 раза. К тому же, применение ячеек, наполненных газом под высоким давлением (~30 атм), небезопасно для персонала и приводит кроме этого к увеличению весов и габаритов.

Применение в качестве преобразователей на ВКР кристаллов и KY(WO4)2, KGd. (WO4)2, Gd(MoO4)3 и др. позволяет увеличить коэффициент преобразования излучения в первую стоксовую компоненту до 60%.

Наиболее близким по технической сущности к предлагаемому изобретению является импульсный твердотельный лазер с преобразованием длины волны излучения на ВКР в кристаллах Ba(NO3)2 и KGd(WO4)2 [2]. Однако КПД такого лазера в целом остается низким, как остаются высокими и пороги ВКР-преобразования ~ 2 ГВт/см2 из-за внерезонаторной схемы преобразования длины волны излучения. Данная схема в сущности является однопроходовой схемой преобразования и не является эффективной, поскольку эффективность преобразования в стоксовую компоненту пропорциональна длине кристалла.

Задачей настоящего изобретения является повышение КПД лазера на ВКР, снижение его пороговых характеристик, уменьшение веса и габаритов лазера.

В предложенном импульсном твердотельном лазере с преобразованием длины волны излучения на вынужденном комбинационном рассеянии, содержащем оптический резонатор, внутри которого установлены кристаллический активный элемент и модулятор добротности, активный элемент выполнен из материала, преобразующего генерируемую на рабочем переходе длину волны излучения в стоксовые компоненты, резонатор образован глухим зеркалом, полностью отражающим излучение с длиной волны первой стоксовой компоненты и максимально пропускающим излучение с длинами волн, соответствующими нерабочим переходам активного элемента, и выходным зеркалом, полностью отражающим излучение, генерируемое на длине волны рабочего перехода активного элемента, частично пропускающим излучение на длине волны первой стоксовой компоненты и максимально пропускающим излучение с длинами волн, соответствующими нерабочим переходам активного элемента и второй стоксовой компоненты, модулятор добротности выполнен на основе электрооптического элемента и поляризатора или на основе насыщающегося фильтра со временем релаксации, превышающим более чем на порядок время обхода резонатора, и максимально пропускающий излучение с длиной волны первой стоксовой компоненты.

Использование в качестве активного элемента материала, обладающего помимо осуществления генерации лазерного излучения на выбранном рабочем переходе свойствами ВКР-преобразования позволяет существенно уменьшить пороги ВКР-преобразования до 0,15 - 0,25 ГВт/см2, увеличить КПД генерации на длине волны первой стоксовой компоненты за счет уменьшения потерь и увеличения эффективной длины преобразования.

Параметрические спектральные характеристики покрытий зеркал и модулятора, а также требования к времени релаксации насыщающегося фильтра обеспечивают вывод из резонатора импульсов излучения на длине волны первой стоксовой компоненты с длительностью импульса в наносекундном диапазоне.

На чертеже представлена схема предлагаемого устройства. Резонатор образован глухим зеркалом 1, полностью отражающим излучение с длиной волны генерируемого излучения г и его первой стоксовой компонентой и максимально пропускающим излучение с длинами волн, соответствующими другим переходам активного элемента, и выходным зеркалом 2, полностью отражающим генерируемое излучение с длиной волны г, частично пропускающим излучение на длине волны первой стоксовой компоненты и максимально пропускающим излучение с длинами волн, соответствующими нерабочим переходам и второй стоксовой компоненте . При этом выбранная величина г соответствует одному из возможных лазерных переходов активных центров, а величины и определяются основным сдвигом частоты ()-1 относительно г



где n = 1,2...

Активный элемент 3 из кристаллов, обладающих свойством ВКР- преобразования (KGd(WO4)2, Gd2(MoO4)3 и т.д.) и активированных ионами редкоземельных элементов, вырезан и ориентирован таким образом, чтобы эффективность ВКР-преобразования вдоль оптической оси была максимальной. Между глухим зеркалом 1 и активным элементом 3 установлен модулятор добротности резонатора 4, выполненный на основе электрооптического элемента и поляризатора или на основе насыщающегося фильтра.

Предлагаемый лазер работает следующим образом. Во время действия импульса накачки в активном элементе создается инверсная населенность, достигающая максимального значения в момент . В случае применения электрооптического элемента на его электроды в момент подается импульс высоковольтного напряжения, переключающий добротность от минимальной величины до максимально возможной. Так как выходное зеркало полностью отражает излучение только с выбранной длиной волны г, то через некоторое время после включения модулятора (считая от фронта импульса) появятся импульс с длительностью в наносекундном диапазоне на длине волны г и практически полностью совпадающий с ним по времени импульс излучения первой стоксовой компоненты с длиной волны , часть которого выводится из резонатора через зеркало 2. Энергия импульса излучения на длине волны будет определяться соотношением между пиковой мощностью импульса излучения на длине волны г и пороговой мощностью ВКР-преобразования на длине волны . В случае применения насыщающегося фильтра энергия импульсов генерации на длине волны г и, соответственно, будет расти с ростом начального пропускания фильтра. Ограничение на время релаксации фильтра обеспечивает генерацию импульса излучения с длительностью в наносекундном диапазоне.

По сравнению с лазером на внерезонаторном ВКР-преобразовании в предлагаемом лазере непреобразованное излучение возвращается в резонатор и многократно участвует в процессе генерации и ВКР-преобразовании и поэтому очевидно, что порог ВКР и заданная энергия излучения выходных импульсов будут достигнуты при меньших энергиях накачки лазера, что существенно повышает КПД лазера в целом.

Энергетический расчет и экспериментальные результаты ВКР лазера с активным элементом из KGd(WO4)2:Nd3+ подтверждают эффективность предлагаемого лазера.

Примером конкретной реализации предлагаемого устройства является твердотельный лазер, генерирующий импульсное излучение на длине волны = 1,54 мкм, безопасный для человеческого глаза. В качестве активного элемента использовался элемент из кристалла калий-гадолиниевого вольфрамата с неодимом KGd(WO4)2:Nd3+ размерами 4х50 мм, вырезанный по оси (010). В качестве длины волны рабочего перехода выбрана г = 1,351 мкм. Частотный сдвиг равнялся ()-1 = 901 см-1 и, соответственно, длина волны первой стоксовой компоненты = 1,54 мкм. Резонатор был образован зеркалами со следующими параметрами, %:

а) глухое зеркало 1 имело коэффициенты отражения Rr:

на длине волны 1,351 мкм Rг1,351 =99,9;

на длине волны 1,067 мкм Rг1,067 =5;

на длине волны 1,54 мкм Rг1,54 =99,9;

б) выходное зеркало 2 имело коэффициенты отражения Rb, %:

на длине волны 1,351 мкм RВ1,351 = 99,9;

на длине волны 1,067 мкм RВ1,067 = 5,9;

на длине волны 1,54 мкм RВ1,54/ = 40;

на длине волны 1,7 мкм RВ1,7 = 10.

Модуляция добротности осуществлялась электрооптическим элементом из кристалла ниобата лития LiNbO3 с брюстеровскими входными поверхностями. Активный элемент был помещен в посеребренную кварцевую трубку и накачивался лампой ИНП 3/35.

Результаты испытаний показали, что такой лазер генерирует импульс излучения с длиной волны 1,54 мкм энергией 10 мДж при длительности импульса 12 нс. Энергия импульса накачки составила 6 Дж. Данный лазер был испытан при частоте повторения 10 Гц и в режиме длительных испытаний генерировал импульсы излучения со стабильными пространственно-временными параметрами.

Дополнительным преимуществом соединения свойств активного элемента и ВКР-преобразователя в одном элементе является очевидное уменьшение веса и габаритов лазера. Оценки также показывают, что применение аналогичной схемы с заменой одного элемента - самопреобразователя на два (активный элемент и кристаллический ВКР-преобразователь) приводит за счет увеличения длины резонатора и появления дополнительных внутрирезонаторных пассивных потерь к увеличению длительности импульса генерируемого излучения, к уменьшению мощности и, следовательно, к возрастанию порога ВКР и снижению эффективности лазера в целом.

Таким образом, предлагаемый лазер по сравнению с аналогами и прототипом позволяет получить импульсы излучения в наносекундном диапазоне на выбранной длине волны с большим КПД, меньшими порогами ВКР-преобразования и при этом имеет меньший вес и габариты. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



Импульсный твердотельный лазер с преобразованием длины волны излучения на вынужденном комбинационном рассеянии, содержащий резонатор, внутри которого установлены кристаллический активный элемент и модулятор добротности, отличающийся тем, что активный элемент выполнен из материала, преобразующего генерируемую на рабочем переходе длину волны излучения в стоксовые компоненты, резонатор образован глухим зеркалом, полностью отражающим излучением с длиной волны первой стоксовой компоненты и максимально пропускающим излучение с длинами волн, соответствующими нерабочим переходам активного элемента, и выходным зеркалом, полностью отражающим излучение, генерируемое на длине волны рабочего перехода активного элемента, частично пропускающим излучение на длине волны первой стоксовой компоненты и максимально пропускающим излучение с длинами волн, соответствующими нерабочим переходам активного элемента и второй стоксовой компоненты, модулятор добротности выполнен на основе электрооптического элемента и поляризатора или на основе насыщающегося фильтра со временем релаксации, превышающим более чем на порядок время обхода резонатора, и максимально пропускающий излучение с длиной волны первой стокосовой компоненты.


ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к лазерным квантовым генераторам, а именно лазеры и лазерное оборудование:

- твердотельные полупроводниковые лазеры

- газовые лазеры

- химические лазеры

- практическое применение в промышленности, науке и в быту газовых, твердотельных и химических лазеров.


Лазеры. Лазерное оборудование






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+газовый -лазер".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "лазер" будут найдены слова "лазеры", "лазерный" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("лазер!").



Рейтинг@Mail.ru