МАТРИЦА ЛАЗЕРНЫХ ДИОДОВ

 


RU (11) 2117371 (13) C1

(51) 6 H01S3/19 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 25.10.2007 - прекратил действие 

--------------------------------------------------------------------------------

(21) Заявка: 96119588/25 
(22) Дата подачи заявки: 1996.09.30 
(45) Опубликовано: 1998.08.10 
(56) Список документов, цитированных в отчете о поиске: 1. US, 48447851 А, 1989. 2. US, 5128951 А, 1992. 3. SU, 749333 А, 1981. 4. SU, 876017 А, 1987. 
(71) Заявитель(и): Акционерное общество закрытого типа "Энергомаштехника" 
(72) Автор(ы): Аполлонов В.В.; Бабаянц Г.И.; Державин С.И.; Кишмахов Б.Ш.; Коваль Ю.П.; Кузьминов В.В.; Машковский Д.А.; Прохоров А.М.; Смекалин В.П. 
(73) Патентообладатель(и): Акционерное общество закрытого типа "Энергомаштехника" 

(54) МАТРИЦА ЛАЗЕРНЫХ ДИОДОВ 

Изобретение относится к полупроводниковым лазерам и может быть использовано для эффективной накачки твердотельных лазеров в волоконно-оптической связи, медицине и других областях техники. Технический результат изобретения - повышение плотности и однородности излучения матриц лазерных диодов, обеспечение конструктивной возможности упрощения электрической коммутации линеек диодов. Сущность изобретения: матрица лазерных диодов представляет собой попеременно закрепленные в одну общую конструкцию теплоотводящие пластины и линейки лазерных диодов. Теплоотводящие пластины непосредственно омываются охлаждающей жидкостью. Конструктивно обеспечено последовательное соединение линеек лазерных диодов. 4 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к полупроводниковым лазерам, в частности к конструкциям матриц лазерных диодов.

Изобретение может быть использовано для накачки твердотельных лазеров, в волоконно-оптической связи, лазерной обработке материалов, компьютерной технике, мониторинге окружающей среды, медицине.

Известны различные одномерные и двухмерные конструкции, объединяющие отдельные лазерные диоды в единый излучатель [1 - 4].

Известно, например, устройство [2], содержащее теплообменник 1 (фиг.1), лазерные диоды (линейки лазерных диодов) 2, припаянные к охлаждаемой плоской поверхности теплообменника, поворотные зеркала 3, направляющие лазерное излучение в требуемом направлении. В известном устройстве обеспечены благоприятные условия для эффективного отвода тепла от активной зоны лазерных диодов.

Однако известное устройство не обеспечивает достаточной плотности и однородности лазерного излучения, что не позволяет использовать его для накачки твердотельных лазеров.

Наиболее близким к заявляемой матрице лазерных диодов является устройство, предложенное в работе [3]. В известном устройстве лазерные диоды припаяны к боковым вертикальным поверхностям тонких прямоугольных призм 4 (фиг. 2), изготовленным на верхней охлаждаемой поверхности теплообменника 1.

Однако известная конструкция не позволяет получить высокую плотность лазерного излучения, т.к. она не обеспечивает удовлетворительного теплоотвода, требовательна к высокой точности расположения отдельных элементов. Лазерные диоды перегреваются и быстро выходят из строя. Известное устройство не технологично в изготовлении.

Технической задачей изобретения является повышение плотности и однородности излучения матрицы лазерных диодов, повышение эффективности теплообмена и долговечности работы устройства, обеспечение конструктивной возможности автоматизации процесса сборки на шаблоне и удешевление всей конструкции.

Для решения поставленной технической задачи матрица лазерных диодов изготовлена в виде набора теплоотводящих пластин 8 и линеек лазерных диодов 2, которые попеременно скреплены, например спаяны в единую микроканальную конструкцию (фиг. 3).

Сборка конструкции осуществлена таким образом, что верхние торцы охлаждающих пластин и излучающих поверхностей линеек лазерных диодов размещены практически в одной плоскости.

Теплоотводящие пластины размером 0,020,31 (см) в конкретной реализации изготовлены из высокотеплопроводного, не проводящего электрический ток материала, например BeO, SiC, алмаз. Это - для случая, когда конструкция охлаждается водой.

Для осуществления электрического контакта с поверхностями линеек лазерных диодов на теплоотводящие пластины в местах контакта и на верхней торцевой поверхности пластин нанесена электропроводящая металлическая пленка 12, материал - Mo, Ni, In, толщиной до 50 мкм (фиг. 3). Пленка металла, кроме того, выполняет роль шины, соединяющей противоположные поверхности теплоотводящих пластин, и осуществляет последовательное соединение всех линеек в матрице лазерных диодов. Выбранная толщина металлической пленки обеспечивает свободное пропускание рабочих токов до 100 A в импульсе длительностью 200 - 400 мс.

Нижние внутренние торцы линеек лазерных диодов содержат 100% отражающие покрытия 13 - зеркала, чтобы лазерное излучение было направлено вверх. Внутренние нижние торцы диодных линеек герметизированы прокладками 11, не проводящими электрический ток (фиг. 3). Поверхности теплоотводящих пластин отполированы до величины шероховатости не хуже 1 мкм.

Нижние торцы теплоотводящих пластин герметично закреплены (припаяны) на пластине-поддоне 9.

Теплообменник 1, таким образом, представляет собой единую микроканальную конструкцию с периодом расположения каналов 10 для охлаждающей жидкости по порядку величины близкой к толщине диодной линейки.

Матрица лазерных диодов с теплообменником установлена и закреплена, например, вклеена в корпус (фиг. 4), который содержит вводы для подачи и вывода охлаждающей жидкости 14 и контакты для подключения источника электрического питания 15. На длине 1 см можно разместить до 20 линеек лазерных диодов.

Если в качестве теплоотводящих использовать металлические пластины, то для охлаждения необходимо использовать непроводящие электрический ток жидкости, например, деионизированную воду.

На фиг. 1 изображена схема расположения линеек лазерных диодов на поверхности теплообменника - аналог [2], где 1 - теплообменник; 2 - лазерные диоды; 3 - поворотные зеркала.

На фиг. 2 приведена схема расположения линеек лазерных диодов на вертикальных поверхностях тонких прямоугольных призм - прототип, где 4 - GaAS- подложка; 5 - теплоотводящая пластина; 6 - активная зона лазерного диода; 7 - соединительные проводники, 8 - теплоотводящие пластины.

На фиг. 3 представлена схема предложенного устройства матрицы лазерных диодов - вид сбоку без корпуса, где 9 - пластина - поддон; 10 - каналы для охлаждающей жидкости; 11 - герметизирующая прокладка; 12 - электропроводная металлическая пленка; 13 - отражающее покрытие на торце лазерного диода (зеркало).

На фиг. 4 изображен общий вид предложенной матрицы лазерных диодов в собранном виде, где 14 - вводы для охлаждающей жидкости; 15 - контакты для подключения источника электропитания.

Матрица лазерных диодов работает следующим образом. Через вводы 14 и микроканальную систему матрицы лазерных диодов прокачивается охлаждающая жидкость, например, вода под заданным давлением и определенной температуре. Поскольку линейки лазерных диодов расположены на поверхности охлаждающих пластин и в непосредственной близости от потока охлаждающей жидкости, то обеспечивается эффективный отвод тепла от активной зоны лазерных диодов. На контакты 15 подается электропитание постоянного тока и соответствующего напряжения и мощности. Лазерное излучение выводится через верхнюю плоскость матрицы лазерных диодов.

Таким образом, предложенное устройство решает следующие технические задачи:

за счет плотной упаковки матрицы линейками лазерных диодов повышена плотность и однородность лазерного излучения;

за счет улучшения теплоотвода от активной зоны лазерных диодов повышена долговечность работы устройства;

конструктивно обеспечена возможность автоматизации процесса сборки матрицы лазерных диодов на шаблоне, что позволило уменьшить стоимость всего устройства.

Сопоставительный анализ предложенной матрицы лазерных диодов с аналогами и с прототипом и анализ других источников информации дает основание считать, что заявляемое устройство находится в соответствии с критерием "новизна".

При сравнении формулы изобретения с другими техническими решениями в данной области техники не обнаружено решений, обладающих сходными признаками и решающими аналогичные технические задачи, что позволяет сделать вывод о соответствии критерию "изобретательский уровень.

Стыкуя элементарные ячейки, которые в конкретной реализации использованы 11 см, можно изготовить матрицу лазерных диодов любого разумного размера. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



Матрица лазерных диодов, содержащая линейки лазерных диодов, теплообменник и корпус с фланцами для входа и выхода охлаждающей жидкости и с контактами для подключения источника питания, отличающаяся тем, что она изготовлена в виде единой микроканальной конструкции, объединяющей линейки лазерных диодов, теплообменник и корпус и состоящей из набора теплоотводящих пластин толщиной порядка 250 мкм, изготовленных из высокотеплопроводного не проводящего электрический ток материала, между верхними концами которых последовательно и заподлицо установлены и припаяны линейки лазерных диодов, излучающими поверхностями направленные вверх, нижние поверхности которых между теплоотводящими пластинами герметизированы не проводящими электрический ток прокладками, причем теплоотводящие пластины в местах контакта их с поверхностями линеек лазерных диодов покрыты токопроводящими покрытиями толщиной 50 - 200 мкм, а нижние торцы теплоотводящих пластин закреплены и герметизированы с помощью фиксирующей пластины-поддона из не проводящего электрический ток материала, причем обеспечена параллельность между собой всех теплоотводящих пластин, проток охлаждающей жидкости по всем каналам и герметичность единой микроканальной конструкции.


ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к лазерным квантовым генераторам, а именно лазеры и лазерное оборудование:

- твердотельные полупроводниковые лазеры

- газовые лазеры

- химические лазеры

- практическое применение в промышленности, науке и в быту газовых, твердотельных и химических лазеров.


Лазеры. Лазерное оборудование






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+газовый -лазер".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "лазер" будут найдены слова "лазеры", "лазерный" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("лазер!").



Рейтинг@Mail.ru