МИКРОТРОН

МИКРОТРОН


RU (11) 2157600 (13) C1

(51) 7 H05H13/06 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 25.10.2007 - прекратил действие 

--------------------------------------------------------------------------------

(21) Заявка: 99111276/06 
(22) Дата подачи заявки: 1999.05.31 
(24) Дата начала отсчета срока действия патента: 1999.05.31 
(45) Опубликовано: 2000.10.10 
(56) Список документов, цитированных в отчете о поиске: SU 226743 A, 30.01.1969. SU 1022645 A, 30.06.1985. SU 1102480 A, 30.06.1985. US 4623847 A, 18.11.1986. GB 1505188 A, 30.03.1978. 
(71) Заявитель(и): Дубинов Александр Евгеньевич 
(72) Автор(ы): Дубинов А.Е. 
(73) Патентообладатель(и): Дубинов Александр Евгеньевич 
Адрес для переписки: 607188, Нижегородская обл., г. Саров, а/я 93, Дубинову А.Е. 

(54) МИКРОТРОН 

Изобретение относится к ускорительной технике и может быть использовано при создании сильноточных циклических СВЧ ускорителей электронов-микротронов. Микротрон содержит электромагнит, вакуумную камеру, в которой расположены электронный источник со своим источником питания, цилиндрический ускоряющий резонатор с торцевыми стенками, на которых расположены прозрачные для электронов диафрагмы, и приемник пучка. Электронный источник расположен напротив одной из диафрагм резонатора параллельно его торцевым стенкам. Представляет плоский взрывоэмиссионный катод, выполненный в виде прозрачной для электронов металлической фольги или металлической сетки. Диафрагмы также выполнены в виде плоской прозрачной для электронов металлической фольги или металлической сетки. Расстояние d между катодом и ближайшей к нему торцевой стенкой удовлетворяет условию , где h - высота резонатора. Достигается существенное увеличение тока ускоренных электронов и упрощение конструкции микротрона с исключением необходимости использования внешнего СВЧ генератора и тракта согласования. 1 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к ускорительной технике и может быть использовано при создании сильноточных циклических СВЧ ускорителей электронов - микротронов.

Известны микротроны, содержащие электромагнит, вакуумную камеру, в которой расположены электронный источник со своим источником питания, цилиндрический ускоряющий резонатор с торцевыми стенками, на которых расположены прозрачные для электронов диафрагмы в виде отверстий, и приемник пучка (например, мишень тормозного излучения или окно вывода пучка), причем в качестве электронного источника используется термоэмиссионная электронная пушка, а ускоряющий резонатор подключен с помощью специального согласующего волноводного тракта к внешнему СВЧ генератору [1] (Капица С.П., Мелехин В.Н. , "Микротрон", М.: Наука, 1969).

Наиболее близким к предлагаемому решению является микротрон [2] (Капица С. П. , Мелехин В. Н. , "Устройство для ускорения электронов", а.с. СССР N 226743, 18.2.65, H 05 H 13/0.6, опубл. БИ N 29, 1968), также содержащий электромагнит, вакуумную камеру, в которой расположены электронный источник со своим источником питания, цилиндрический ускоряющий резонатор с торцевыми стенками, на которых расположены прозрачные для электронов диафрагмы в виде отверстий, и приемник пучка, причем ускоряющий резонатор подключен с помощью согласующего волноводного тракта к внешнему СВЧ генератору.

Недостатками известных микротронов [1,2] являются, во-первых, малый ток ускоренных электронов (всего несколько сотен миллиампер) и, во-вторых, большая сложность конструкции, проявляющаяся в наличии СВЧ генератора и специального устройства его согласования с ускоряющим резонатором.

Технической задачей изобретения является упрощение конструкции и увеличение тока ускоренных электронов.

Техническим результатом предлагаемого решения является существенное увеличение тока ускоренных электронов и упрощение конструкции микротрона с исключением необходимости использования внешнего СВЧ генератора и тракта согласования.

Этот результат достигается тем, что, как и известные, предлагаемый микротрон содержит электромагнит, вакуумную камеру, в которой расположены электронный источник со своим источником питания, цилиндрический ускоряющий резонатор с торцевыми стенками, на которых расположены прозрачные для электронов диафрагмы, и приемник пучка, но в отличие от них электронный источник расположен напротив одной из диафрагм резонатора параллельно его торцевым стенкам и представляет плоский взрывоэмиссионный катод, выполненный в виде прозрачной для электронов металлической фольги или металлической сетки, диафрагмы также выполнены в виде плоской прозрачной для электронов металлической фольги или металлической сетки, причем расстояние d между катодом и ближайшей к нему торцевой стенкой удовлетворяет условию , где h - высота резонатора.

Действие микротрона основано на создании условий для формирования в ускоряющем резонаторе виртуального катода, который модулирует электронный пучок, то пропуская их, то отражая назад, и возбуждает мощные СВЧ колебания в резонаторе.

Достаточные условия для формирования виртуального катода заключаются, во-первых, в обеспечении работы электронного диода "катод-ближайшая к нему торцевая стенка резонатора" в режиме Чайльда-Ленгмюра [3] (Форрестер А.Т., "Интенсивные ионные пучки", М.: Мир, 1992), когда плотность тока, ускоряемого в диоде, максимально возможная, и чего легко добиться при использовании взрывоэмиссионных катодов, и во-вторых, в инжекции электронного пучка в замкнутую эквипотенциальную полость (в нашем случае - резонатор) с током, превышающим значение предельного вакуумного тока для данной полости [4] (Дубинов А.Е., Селемир В.Д. "Сверхмощные СВЧ приборы с виртуальным катодом и фазированные антенные решетки на их основе", Зарубежная радиоэлектроника, 1995, N 4, с. 54), что автоматически получается, если и резонатор - замкнутая эквипотенциальная полость с диафрагмами в виде прозрачной для электронов металлической фольги или металлической сетки.

Подбор величины магнитного поля электромагнита микротрона осуществляется так же, как и в известных [1], но с учетом того, что частота СВЧ колебаний виртуального катода равна примерно удвоенной плазменной частоте электронного пучка на выходе из диода.

Как легко видеть, заявленный технический результат достижим: внешнего СВЧ генератора нет в составе предлагаемого микротрона, а ускоряемый электронный ток сравним с предельным вакуумным (десятки килоампер и выше).

Пример конструкции микротрона показан на чертеже, где обозначено: 1 - вакуумная камера; 2 - взрывоэмиссионный катод; 3 - цилиндрический ускоряющий резонатор; 4 - мишень тормозного излучения; 5 - источник питания; ВК - виртуальный катод; стрелками показана траектория ускоряемых электронов; электромагнит, полностью идентичный электромагнитам известных микротронов [1,2], не показан, направление магнитного поля показано значком H.

Конструкция вакуумной камеры 1 также не отличается от известных [1, 2]. Катод 2 может быть выполнен, например, из тонкой (50-100 мкм) титановой фольги либо из вольфрамовой проволочной сетки с диаметром проволочек 200-500 мкм и размером ячеек сетки 1-2 мм. Такими же можно выполнить и диафрагмы на торцевых стенках ускоряющего резонатора 3. Материал мишени тормозного излучения 4 - тантал, толщина ее выбирается в соответствии с конечной энергией ускорения. К промежутку "катод 2 - ближайшая к нему торцевая стенка резонатора 3" подключается внешний источник питания (источник высокого импульсного напряжения) 5, например, типа Аркадьева-Маркса [5] (Месяц Г.А., "Генерирование мощных наносекундных импульсов", М.: Атомиздат, 1972).

Опишем работу микротрона. При подаче импульса высокого напряжения с помощью источника питания 5 на промежуток "катод 2 - ближайшая к нему торцевая стенка резонатора 3" на поверхности катода, обращенной к резонатору, образуется тонкий слой электровзрывной плазмы микроострий катода. Это же напряжение является ускоряющим для электронов, которые покидают эту плазму, набирают энергию и инжектируются в эквипотенциальную полость резонатора 3. Внутри резонатора формируется виртуальный катод, который то пропускает электроны вперед, то отражает их назад в диод, возбуждая интенсивные электромагнитные СВЧ колебания в резонаторе. Эти колебания уже на первом пролете резонатора позволяют заметно повысить энергию пролетных электронов на выходе из резонатора почти в два раза по сравнению с энергией на входе в резонатор [6] (Долгачев Г. И., Закатов Л.П., Орешко А. Г., Скорюпин В.А., "Увеличение энергии электронов в магнитно-изолированном диоде с виртуальным катодом", Физика плазмы, 1985, т. 11, N 11, с. 1425). Далее пролетные электроны дрейфуют в магнитном поле в вакуумной камере 1 по круговым траекториям практически без изменения энергии. При подлете к катоду электроны частично замедляют свое движение и снова ускоряются при подлете к резонатору. Если правильно подобрать фазу влета электронов в резонатор с тем, чтобы они попали туда в ускоряющей фазе электромагнитных СВЧ колебаний, то при вторичном пролете резонатора они вновь приобретут энергию. И далее при всех последующих пролетах электрона резонатора будет происходить последовательное ускорение электронов до тех пор, пока радиус окружности оборота электронов в магнитном поле не станет таким, чтобы траектория электронов коснулась мишени.

Оптимальный подбор фазы влета электронов в резонатор можно осуществить регулированием трех параметров: величины напряжения в диоде, величины диодного промежутка, величины магнитного поля.

Приведем диапазоны ожидаемых параметров микротрона:

Магнитное поле - 1 - 5 кЭ

Величина диодного промежутка - 1 - 3 см

Напряжение в диоде - 200 - 500 кВ

Ускоряемый ток - 20 - 50 кА

Энергия ускорения - До 10 МэВщ 


ФОРМУЛА ИЗОБРЕТЕНИЯ



Микротрон, содержащий электромагнит, вакуумную камеру, в которой расположены электронный источник со своим источником питания, цилиндрический ускоряющий резонатор с торцевыми стенками, на которых расположены прозрачные для электронов диафрагмы, и приемник пучка, отличающийся тем, что электронный источник расположен напротив одной из диафрагм резонатора параллельно его торцевым стенкам и представляет плоский взрывоэмиссионный катод, выполненный в виде прозрачной для электронов металлической фольги или металлической сетки, диафрагмы также выполнены в виде плоской прозрачной для электронов металлической фольги или металлической сетки, причем расстояние d между катодом и ближайшей к нему торцевой стенкой удовлетворяет условию , где h - высота резонатора.


ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к лазерным квантовым генераторам, а именно лазеры и лазерное оборудование:

- твердотельные полупроводниковые лазеры

- газовые лазеры

- химические лазеры

- практическое применение в промышленности, науке и в быту газовых, твердотельных и химических лазеров.


Лазеры. Лазерное оборудование






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+газовый -лазер".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "лазер" будут найдены слова "лазеры", "лазерный" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("лазер!").



Рейтинг@Mail.ru