ГАЗОДИНАМИЧЕСКИЙ CO2-ЛАЗЕР

ГАЗОДИНАМИЧЕСКИЙ CO2-ЛАЗЕР 


RU (11) 2169976 (13) C2

(51) 7 H01S3/0979 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 25.10.2007 - прекратил действие 

--------------------------------------------------------------------------------

(21) Заявка: 99119566/28 
(22) Дата подачи заявки: 1999.09.10 
(24) Дата начала отсчета срока действия патента: 1999.09.10 
(45) Опубликовано: 2001.06.27 
(56) Список документов, цитированных в отчете о поиске: US 4320358 A, 16.03.1978. RU 2069432 A, 20.11.1996. US 3921110 A, 18.11.1975. JP 06326386 A, 25.11.1994. US 3907409 A, 23.09.1975. 
(71) Заявитель(и): Закрытое акционерное общество "Тепловые Экологичные Технологии" 
(72) Автор(ы): Благов В.В.; Евсеев А.Г.; Евсеев Г.А.; Котельников В.В. 
(73) Патентообладатель(и): Закрытое акционерное общество "Тепловые Экологичные Технологии" 
Адрес для переписки: 125438, Москва, ул. Онежская, д.8-10, ЗАО "ТЭТ", Евсееву А.Г. 

(54) ГАЗОДИНАМИЧЕСКИЙ CO2-ЛАЗЕР 

Область применения изобретения - лазерная техника (газодинамические лазеры). Газодинамический СO2-лазер содержит генератор нагретого рабочего газа, сопловой блок, рабочую часть с полостями для оптического резонатора с устройствами юстировки зеркал, многоканальный диффузор. Генератор нагретого рабочего тела включает плоскую камеру сгорания и блок подмешивания с ресивером. На входе камеры сгорания выполнен плоский коллектор горючего, стенка которого, обращенная к огневому днищу, образована размещенным внутри полости горючего дефлектором с отверстиями для подачи горючего в зазор между дефлектором и огневым днищем и далее в полость горючего. В форсунки, соединенные с огневым днищем и с перегородкой, разделяющей полости горючего и окислителя, подача горючего осуществляется между дефлектором и перегородкой. Блок подмешивания азота включает переднюю стенку и заднюю стенку с отверстиями и размещенные между стенками соосно отверстиям смесительные элементы. Передняя стенка выполнена в виде набора пластин, соединенных с корпусом и между собой с возможностью их термического расширения. В пластинах концентрично смесительным элементам выполнены проточки с образованием щелевых каналов для протока подмешиваемого компонента. Выходы из щелевых каналов сообщены с входами смесительных элементов. В лопатках соплового блока внутри цилиндрических каналов охлаждения размещены силовые стержни, соединенные с корпусом соплового блока. Решетка сопел установлена в корпусе соплового блока с образованием в корпусе над и под решеткой сопел полостей для подвода/отвода рабочего компонента. В решетке сопел по краям установлены периферийные лопатки и вкладыши, которые в совокупности образуют сопла завесы-вдува и их ресиверы. Во вкладыше выполнен канал, сообщенный с полостью подвода рабочего компонента и с ресивером сопла завесы-вдува. Полость подвода рабочего компонента сообщена с источником рабочего компонента. Полость отвода рабочего компонента сообщена с генератором нагретого рабочего газа. В многоканальном диффузоре размер входа в крайний канал диффузора согласован с высотой выхода единичного сопла соплового блока и длиной рабочей части. Сборка камеры сгорания, блока подмешивания, ресивера и соплового блока выполнена по типу замкового соединения. В полости оптического резонатора за выходным зеркалом под углом к лучу лазера установлено дополнительное зеркало наблюдения. Технический результат изобретения: высокая эффективность, надежность в работе, компактность и весовое совершенство лазера. 4 з.п.ф-лы, 8 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к лазерной технике и может быть использовано при создании газодинамического CO2-лазера с оптимальными параметрами за счет эффективной конструкции его элементов - камеры сгорания с блоком подмешивания, соплового аппарата, рабочей части с резонатором и диффузора.

Известен газодинамический CO2-лазер, известны конструкции основных его элементов - камеры сгорания с блоком подмешивания, соплового аппарата, рабочей части с резонатором, диффузора, в том числе многоканального (см., например, Андерсон Дж. Газодинамические лазеры. М.: Мир, 1979; Борейшо А.С. Лазеры: Устройство и действие, СПб, 1992 г.; Газодинамические проблемы в лазерной технике. Обзоры ЦАГИ, N 577, 1980; Патент РФ N 2059333, кл. H 01 S 3/0953, 1991; Горячев С.Б. и др. Экспериментальная установка Ц2П - газодинамический CO2-лазер с нагревом газа в трехфазном плазмотроне. Препринт ИАЭ- 3320/7, 1980; Андропов Е.Т. и др. Разработка и исследование модельных образцов генераторных блоков газодинамического CO2-лазера. Препринт ИВТ АН СССР N 5-170, 1985; Большой энциклопедический словарь. Физика. Гл. редактор Прохоров А.М., М.: Научное изд-во "БРЭ", М., 1998).

Известен газодинамический CO2-лазер (см. Патент США N 4320358, кл. H 01 S 3/05, НКИ 372/90, 1978), взятый в качестве прототипа.

Газодинамический CO2-лазер в целом может содержать плоские:

- охлаждаемый рабочими компонентами генератор нагретого рабочего газа,

- сопловой блок в виде решетки плоских сверхзвуковых сопел, образованных лопатками с цилиндрическими каналами охлаждения, оси которых лежат в плоскости симметрии лопатки, при этом каналы охлаждения сообщены с полостями для подвода/отвода рабочего компонента, например азота,

- рабочую часть с полостями для оптического резонатора с устройствами юстировки зеркал,

- многоканальный диффузор.

Недостатки указанных газодинамических CO2-лазеров и отдельных элементов лазера заключаются в том, что:

- для подмешивания дополнительного компонента к потоку нагретого газа используются смесительные элементы, например струйного типа, для которых необходима большая длина по потоку для обеспечения удовлетворительного смешения;

- охлаждение соплового блока осуществляется или дополнительным компонентом, например водой, что требует дополнительной системы питания, или одним из рабочих компонентов при малоэффективном теплообмене в цилиндрических каналах, выполненных в лопатках соплового блока;

- завесы для предотвращения попадания продуктов сгорания в зону установки зеркал резонатора выполняются путем периферийной подачи воздуха или азота, при этом не создается высоконапорный поток, компенсирующий потери полного давления в струйном пограничном слое;

- при выборе многоканального диффузора в основном имеют ввиду уменьшение общей его длины, геометрию крайних каналов диффузора выбирают без учета параметров соплового блока и рабочей части, в результате получают неудовлетворительное восстановление давления в диффузоре;

- при использовании плоских конструкций камеры сгорания, блока подмешивания, ресивера и соплового блока для предотвращения изгибных деформаций по большой стороне используются дополнительные силовые элементы, например ребра жесткости, усложняющие конструкцию лазера;

- многочисленные конструктивные решения устройств юстировки зеркал предусматривают различные способы соединения зеркала с юстировочным устройством и различные способы перемещения его элементов, не обеспечивая неизменность положения центра зеркала в процессе юстировки:

- излучение газодинамического CO2-лазера невидимо для глаза, поэтому для контроля положения луча в пространстве используют, как правило, луч юстировочного гелий-неонового лазера при настройке системы, но во время работы установки юстировочный лазер не позволяет контролировать ход луча рабочего лазера.

В основу изобретения поставлена задача разработать газодинамический CO2-лазер и оптимальные конструкции основных его элементов, свободные от указанных выше недостатков и обеспечивающие высокую эффективность, надежность в работе, компактность и весовое совершенство лазера.

Поставленная цель достигается тем, что в части газодинамического CO2-лазера, содержащего плоские охлаждаемый рабочими компонентами генератор нагретого рабочего газа, сопловой блок в виде решетки плоских сверхзвуковых сопел, образованных лопатками с цилиндрическими каналами охлаждения, оси которых лежат в плоскости симметрии лопатки, а каналы охлаждения сообщены с полостями для подвода/отвода рабочего компонента, например азота, рабочую часть с полостями для оптического резонатора с устройствами юстировки зеркал, многоканальный диффузор, предложены следующие технические решения:

- Генератор нагретого рабочего газа включает плоскую камеру сгорания, блок подмешивания и ресивер. На входе камеры сгорания выполнен плоский коллектор горючего, сообщенный с источником горючего, например окиси углерода. Стенка коллектора горючего, обращенная к огневому днищу камеры сгорания, образована размещенным внутри полости горючего дефлектором с отверстиями для форсунок и отверстиями для подачи горючего в зазор между дефлектором и огневым днищем и далее в полость горючего. Форсунки герметично соединены своими выходными частями с огневым днищем, а входными частями - с перегородкой, разделяющей полости горючего и окислителя. В стенках форсунок между дефлектором и перегородкой выполнены отверстия подачи горючего. Полость окислителя сообщена через тракт охлаждения с источником окислителя, например воздуха.

Охлаждение камеры сгорания осуществляется в данном случае газообразными компонентами, а именно: стенок камеры сгорания - окислителем, а огневого днища - горючим. Предложенное техническое решение позволяет равномерно распределить расход горючего по всей ширине огневого днища, надежно охладить огневое днище и эффективно смешать компоненты в форсунках камеры сгорания.

- Блок подмешивания, например азота, включает переднюю стенку и заднюю стенку (стенку корпуса) с отверстиями и размещенные между стенками соосно отверстиям смесительные элементы, соединенные своими выходными частями с задней стенкой. Передняя стенка выполнена в виде набора пластин, соединенных с корпусом и между собой с возможностью их термического расширения. В пластинах концентрично смесительным элементам выполнены проточки с образованием щелевых каналов для протока подмешиваемого компонента. Выходы из щелевых каналов сообщены со входами смесительных элементов.

Передняя стенка блока подмешивания расположена со стороны камеры сгорания и возможны ее значительные температурные деформации, в основном по ширине блока подмешивания. Предложенное техническое решение позволяет компенсировать термическое расширение передней стенки, подать подмешиваемый компонент в смесительные элементы и дополнительно охладить как переднюю стенку, так и смесительные элементы. Проточная часть смесительного элемента может иметь форму цилиндра или форму конфузор-диффузор.

- В сопловом блоке в лопатках внутри цилиндрических каналов охлаждения размещены с зазором силовые стержни, соединенные с корпусом соплового блока. Решетка сопел установлена в корпусе соплового блока с образованием в корпусе над и под решеткой сопел полостей для подвода/отвода рабочего компонента. В решетке сопел по краям установлены периферийные лопатки и вкладыши, которые в совокупности образуют сопла завесы-вдува с числом Маха на выходе меньшим числа Маха соплового блока, а также ресиверы этих сопел. Во вкладыше выполнен канал, сообщенный с полостью подвода рабочего компонента и с ресивером сопла завесы-вдува. Полость подвода рабочего компонента сообщена с источником рабочего компонента, а полость отвода рабочего компонента сообщена с генератором нагретого рабочего газа.

Предложенное техническое решение позволяет улучшить охлаждение лопаток, так как теплопередача в щелевом канале интенсивнее, чем в цилиндрическом. Использование сопел завесы-вдува позволяет устранить попадание газа, поглощающего лазерное излучение, в зоны у зеркал резонатора, а также уменьшить потери полного давления в струйном пограничном слое.

- В многоканальном диффузоре размер Hд входа в крайний канал диффузора согласован с высотой Hс выхода единичного сопла соплового блока и с длиной рабочей части L и удовлетворяет условиям Hд>3Нс и Hд>0,5L.

В многоканальном диффузоре восстановление давления определяется восстановлением давления в крайних каналах диффузора. Восстановление же давления в крайних каналах определяется потерями в струйном пограничном слое, протяженностью отрывных зон в канале и последующим выравниванием потока в самом канале. Предложенное техническое решение позволяет улучшить восстановление давления в крайнем канале и, как следствие, в диффузоре в целом.

- Сборка камеры сгорания, блока подмешивания, ресивера и соплового блока выполнена по типу замкового соединения, при котором внешний бурт корпуса камеры сгорания сопряжен с внутренним буртом корпуса блока подмешивания, а внешние бурты корпуса ресивера сопряжены с внутренними буртами корпусов блока подмешивания и соплового блока.

Габариты газодинамического CO2-лазера (высота и ширина проточной части) определяются габаритами соплового блока (ширина 1-2 м), отношение характерных ширины к высоте соплового блока составляет величину 10-20, а продольный размер (по потоку) указанных выше элементов составляет величину порядка их высоты. Газодинамический CO2-лазер работает при высоком давлении (1-5 МПа) в камере сгорания, блоке подмешивания, ресивере и на входе в сопловой блок. Очевидно, что наибольшие изгибные деформации могут наблюдаться по наибольшей стороне элементов, а именно по их ширине. Предложенное техническое решение позволяет устранить указанные изгибные деформации и существенно уменьшить общие габариты и массу лазера. При этом силовыми элементами замкового соединения являются задняя стенка корпуса блока подмешивания и размещенные в каналах лопаток силовые стержни, связывающие верхнюю и нижнюю части корпуса соплового блока.

Представленные выше технические решения позволяют уменьшить тепловые потери в генераторе нагретого рабочего газа и в сопловом блоке, повысить температуру рабочего газа, снизить давление рабочего газа на входе в сопловой блок. Все это приводит к тому, что повышается эффективность газодинамического CO2-лазера, т. е. реализуется большая мощность лазерного излучения при заданном расходе рабочего газа. Охлаждение всех теплонапряженных элементов газодинамического CO2-лазера рабочими компонентами повышает надежность его работы. Использование же замкового соединения корпусных элементов генератора нагретого рабочего газа и соплового блока, работающих при высоком давлении, позволяет существенно упростить конструкцию и обеспечить компактность и весовое совершенство газодинамического CO2-лазера.

- В газодинамическом CO2-лазере устройство юстировки зеркал содержит корпус и соединенный с зеркалом через пятку рычаг, в корпус ввернут фланец с кольцевым буртом, во фланце с двух сторон от бурта размещены два кольцевых вкладыша с зазором относительно рычага, рычаг подвижно соединен с корпусом через пятку и дополнительное кольцо, сжимаемых с помощью, например тарельчатых пружин, установленных и зафиксированных с одной стороны на рычаге, соприкасающиеся поверхности дополнительного кольца и кольцевого вкладыша, а также другого кольцевого вкладыша и пятки выполнены сферическими с центром в точке пересечения оси рычага с поверхностью зеркала, корпус снабжен средствами перемещения и фиксации рычага.

Предложенное техническое решение позволяет при юстировке зеркал резонатора осуществлять их угловое перемещение без изменения положения центра зеркала, что упрощает процедуру юстировки зеркал резонатора.

- В полости оптического резонатора за выходным зеркалом под углом к лучу лазера установлено дополнительное зеркало наблюдения.

Предложенное техническое решение позволяет согласовать оси оптического резонатора (луча лазера) и системы наблюдения и избежать их рассогласования, например при прохождении луча лазера через газодинамическое окно, что обеспечивает надежность контроля хода лазерного луча в процессе работы установки.

Сущность предлагаемых технических решений поясняют графические материалы.

На фиг. 1 представлена общая компоновочная схема газодинамического CO2-лазера; на фиг. 2-6 - схемы камеры сгорания, блока подмешивания, соплового блока, многоканального диффузора и схема сборки камеры сгорания, блока подмешивания, ресивера и соплового блока; на фиг. 7 - схема устройства юстировки зеркал; на фиг. 8 - схема установки зеркала наблюдения.

Газодинамический CO2-лазер (фиг. 1) содержит плоские охлаждаемый рабочими компонентами генератор 1 нагретого рабочего газа, сопловой блок 2, рабочую часть 3 с полостями 4 для оптического резонатора, многоканальный диффузор 5.

Генератор 1 нагретого рабочего газа включает плоскую камеру сгорания 6, блок подмешивания 7 и ресивер 8.

На входе камеры сгорания 6 (фиг. 2) выполнен плоский коллектор 9 горючего, сообщенный с источником горючего, например окиси углерода, стенка коллектора горючего, обращенная к огневому днищу 10 камеры сгорания 6, образована размещенным внутри полости 11 горючего дефлектором 12 с отверстиями 13 для форсунок 14 и отверстиями 15 для подачи горючего в зазор между дефлектором 12 и огневым днищем 10 и далее в полость 11 горючего, форсунки 14 герметично соединены своими выходными частями с огневым днищем 10, а входными частями - с перегородкой 16, разделяющей полость 11 горючего и полость 17 окислителя, в стенках форсунок 14 между дефлектором 12 и перегородкой 16 выполнены отверстия 18 подачи горючего, полость 17 окислителя сообщена через тракт 19 охлаждения с источником окислителя, например воздуха.

Блок подмешивания 7 (фиг. 3), например азота, включает переднюю 20 стенку и заднюю 21 стенку (стенку корпуса 22) с отверстиями 23 и 24 и размещенные между стенками соосно отверстиям смесительные элементы 25, соединенные своими выходными частями с задней стенкой, передняя стенка выполнена в виде набора пластин 26, соединенных с корпусом 22 и между собой с возможностью их термического расширения, в пластинах 26 концентрично смесительным элементам выполнены проточки с образованием щелевых каналов 27 для протока подмешиваемого компонента, выходы из щелевых каналов сообщены со входами смесительных элементов.

В сопловом блоке 2 (фиг. 4) в лопатках 28 внутри цилиндрических каналов 29 охлаждения размещены с зазором силовые стержни 30, соединенные с корпусом 31 соплового блока, решетка сопел установлена в корпусе соплового блока с образованием в корпусе над и под решеткой сопел полостей 32, 33 для подвода/отвода рабочего компонента, в решетке сопел по краям установлены периферийные лопатки 34 и вкладыши 35, которые в совокупности образуют сопла 36 завесы-вдува с числом Маха на выходе меньшим числа Маха соплового блока, а также ресиверы 37 этих сопел, во вкладыше выполнен канал 38, сообщенный с полостью 32 подвода рабочего компонента и ресивером 37 сопла завесы-вдува. Полость 32 подвода рабочего компонента сообщена с источником рабочего компонента, а полость 33 отвода рабочего компонента сообщена с генератором 1 нагретого рабочего газа.

В многоканальном диффузоре 5 (фиг. 5) размер Hд входа в крайний канал 39 диффузора согласован с высотой Hс выхода единичного сопла 40 соплового блока и с длиной L рабочей части.

Сборка камеры сгорания 6, блока подмешивания 7, ресивера 8 и соплового блока 2 (фиг. 6) выполнена по типу замкового соединения, при котором внешний бурт 41 корпуса камеры сгорания сопряжен с внутренним буртом 42 корпуса блока подмешивания, а внешние бурты 43 и 44 корпуса ресивера сопряжены с внутренними буртами 45 и 46 корпусов блока подмешивания 7 и соплового блока 2.

Устройство юстировки зеркал (фиг. 7) содержит корпус 47 и соединенный с зеркалом через пятку 48 рычаг 49, в корпус ввернут фланец 50 с кольцевым буртом, во фланце с двух сторон от бурта размещены два кольцевых вкладыша 51 и 52 с зазором относительно рычага 49, рычаг подвижно соединен с корпусом через пятку 48 и дополнительное кольцо 53, сжимаемых с помощью, например тарельчатых пружин 54, установленных и зафиксированных с одной стороны на рычаге, соприкасающиеся поверхности дополнительного кольца 53 и кольцевого вкладыша 52, а также другого кольцевого вкладыша 51 и пятки 48 выполнены сферическими с центром в точке пересечения оси рычага с поверхностью зеркала, корпус снабжен средствами 55 перемещения и фиксации рычага.

В полости 4 оптического резонатора (фиг. 8) за выходным зеркалом 56 под углом к лучу лазера установлено дополнительное зеркало 57 наблюдения.

Предложенные технические решения позволяют обеспечить высокую эффективность, компактность и весовое совершенство газодинамического CO2-лазера и надежность в работе. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



1. Газодинамический CO2-лазер, содержащий плоские охлаждаемый рабочими компонентами генератор нагретого рабочего газа, сопловой блок в виде решетки плоских сверхзвуковых сопел, образованных лопатками с цилиндрическими каналами охлаждения, оси которых лежат в плоскости симметрии лопатки, а каналы охлаждения сообщены с полостями для подвода/отвода рабочего компонента, например азота, рабочую часть с полостями для оптического резонатора с устройствами юстировки зеркал, многоканальный диффузор, отличающийся тем, что генератор нагретого рабочего газа включает плоскую камеру сгорания, блок подмешивания и ресивер, на входе камеры сгорания выполнен плоский коллектор горючего, сообщенный с источником горючего, например окиси углерода, стенка коллектора горючего, обращенная к огневому днищу камеры сгорания, образована размещенным внутри полости горючего дефлектором с отверстиями для форсунок и отверстиями для подачи горючего в зазор между дефлектором и огневым днищем и далее в полость горючего, форсунки герметично соединены своими выходными частями с огневым днищем, а входные частями - с перегородкой, разделяющей полости горючего и окислителя, в стенках форсунок между дефлектором и перегородкой выполнены отверстия подачи горючего, полость окислителя сообщена через тракт охлаждения с источником окислителя, например воздуха, блок подмешивания, например азота, включает переднюю стенку и заднюю стенку (стенку корпуса) с отверстиями и размещенные между стенками соосно отверстиям смесительные элементы, соединенные своими выходными частями с задней стенкой, передняя стенка выполнена в виде набора пластин, соединенных с корпусом и между собой с возможностью их термического расширения, в пластинах концентрично смесительным элементам выполнены проточки с образованием щелевых каналов для протока подмешиваемого компонента, выходы из щелевых каналов сообщены с входами смесительных элементов, в сопловом блоке в лопатках внутри цилиндрических каналов охлаждения размещены с зазором силовые стержни, соединенные с корпусом соплового блока, решетка сопел установлена в корпусе соплового блока с образованием в корпусе над и под решеткой сопел полостей для подвода/отвода рабочего компонента, в решетке сопел по краям установлены периферийные лопатки и вкладыши, которые в совокупности образуют сопла завесы-вдува с числом Маха на выходе, меньшим числа Маха соплового блока, а также ресиверы этих сопел, во вкладыше выполнен канал, сообщенный с полостью подвода рабочего компонента и с ресивером сопла завесы-вдува, полость подвода рабочего компонента сообщена с источником рабочего компонента, а полость отвода рабочего компонента сообщена с генератором нагретого рабочего газа.

2. Газодинамический CO2-лазер по п.1, отличающийся тем, что в многоканальном диффузоре размер НД входа в крайний канал диффузора согласован с высотой Нс выхода единичного сопла соплового блока и с длиной рабочей части L и удовлетворяет условиям Нд > 3Нс и Нд > 0,5L.

3. Газодинамический CO2-лазер по п.1, отличающийся тем, что сборка камеры сгорания, блока подмешивания, ресивера и соплового блока выполнена по типу замкового соединения, при котором внешний бурт корпуса камеры сгорания сопряжен с внутренним буртом корпуса блока подмешивания, а внешние бурты корпуса ресивера сопряжены с внутренними буртами корпусов блока подмешивания и соплового блока.

4. Газодинамический CO2-лазер по п.1, отличающийся тем, что устройство юстировки зеркал содержит корпус и соединенный с зеркалом через пятку рычаг, в корпус ввернут фланец с кольцевым буртом, во фланце с двух сторон от бурта размещены два кольцевых вкладыша с зазором относительно рычага, рычаг подвижно соединен с корпусом через пятку и дополнительное кольцо, сжимаемых с помощью, например, тарельчатых пружин, установленных и зафиксированных с одной стороны на рычаге, соприкасающиеся поверхности дополнительного кольца и кольцевого вкладыша, а также другого кольцевого вкладыша и пятки выполнены сферическими с центром в точке пересечения оси рычага с поверхностью зеркала, корпус снабжен средствами перемещения и фиксации рычага.

5. Газодинамический CO2-лазер по п.1, отличающийся тем, что в полости оптического резонатора за выходным зеркалом под углом к лучу лазера установлено дополнительное зеркало наблюдения.


ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к лазерным квантовым генераторам, а именно лазеры и лазерное оборудование:

- твердотельные полупроводниковые лазеры

- газовые лазеры

- химические лазеры

- практическое применение в промышленности, науке и в быту газовых, твердотельных и химических лазеров.


Лазеры. Лазерное оборудование






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+газовый -лазер".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "лазер" будут найдены слова "лазеры", "лазерный" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("лазер!").



Рейтинг@Mail.ru