СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ЛАЗЕРА С НАКАЧКОЙ ЭЛЕКТРОННЫМ ПУЧКОМ

СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ЛАЗЕРА С НАКАЧКОЙ ЭЛЕКТРОННЫМ ПУЧКОМ


RU (11) 2017267 (13) C1

(51) 5 H01L21/306 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 25.10.2007 - прекратил действие 

--------------------------------------------------------------------------------

(21) Заявка: 5009254/25 
(22) Дата подачи заявки: 1991.09.17 
(45) Опубликовано: 1994.07.30 
(56) Список документов, цитированных в отчете о поиске: 1. Авторское свидетельство СССР N 1653514, кл. H 01S 3/18, 1990. 2. Богданович О.Б. и др. Неохлаждаемые импульсные лазеры с продольной накачкой электронным пучком. Квантовая электроника, 1985, т.12, N 7, с.1517-1519. 
(71) Заявитель(и): Институт физики АНБ 
(72) Автор(ы): Грибковский В.П.; Грузинский В.В.; Гурский А.Л.; Давыдов С.В.; Кулак И.И.; Луценко Е.В.; Митьковец А.И.; Ставров А.А.; Шкадаревич А.П.; Яблонский Г.П. 
(73) Патентообладатель(и): Институт физики им.Б.И.Степанова АНБ 

(54) СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ЛАЗЕРА С НАКАЧКОЙ ЭЛЕКТРОННЫМ ПУЧКОМ 

Использование: технология изготовления мощных полупроводниковых лазеров с накачкой электронным пучком. Сущность изобретения: при изготовлении полупроводникового лазера с накачкой электронным пучком используют пластину из селенида цинка, изготавливают оптический резонатор, состоящий из двух зеркал. Глухое зеркало изготавливают на поверхности пластины, перпендикулярной кристаллографическому направлению [III], путем травления этой поверхности в концентрированной соляной кислоте при температуре ее кипения в течение 3 - 5 мин. 1 табл. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к лазерной технике, в частности к технологии изготовления лазеров, и может быть использовано при создании мощных полупроводниковых лазеров с накачкой электронным пучком большого сечения.

Известен способ изготовления полупроводникового лазера, включающий изготовление подложки, выходного зеркала, определение кристаллографической полярности поверхностей полупроводниковой пластины, механическую, химическую и химико-механическую (химико-динамическую) обработку поверхности A (0001), приклейку пластины к подложке стороной A, шлифовку пластины до получения необходимой толщины, резку пластины на элементы и травление поверхности B (000) пластины в концентрированной соляной кислоте в течение 30-60 с при комнатной температуре с последующей промывкой в дистиллированной воде [1].

Недостаток этого способа - его пригодность только для изготовления лазеров на основе кристаллов сульфида кадмия. В случае применения этого способа с указанными в нем режимами обработки к кристаллам селенида цинка цель не достигается, поскольку травление поверхности при указанных режимах не дает в этом случае ни быстрого снятия нарушенного слоя, ни образования микрорельефа с необходимыми характеристиками, выполняющего функцию глухого зеркала.

Наиболее близким по технической сущности и достигаемому эффекту к заявляемому является способ изготовления лазера, пригодный для любых монокристаллов и включающий изготовление подложки, нанесение выходного зеркала, шлифовку, механическую и химико-динамическую либо химико-механическую полировку одной из сторон пластины, приклейку пластины полированной стороной к подложке, придание пластине заданной толщины посредством механической шлифовки, механической и химико-механической (химико-динамической) полировки, разрезание пластины на элементы и их оптическую изоляцию, нанесение заднего глухого зеркала методом вакуумного напыления [2].

Недостатком данного способа является сравнительно невысокая выходная мощность и лучевая прочность получаемых устройств, так как под воздействием электронов разрушаются области границ раздела зеркало-кристалл, а под воздействием света - зеркало-подложка. Другим недостатком является его сложность, необходимость нанесения вакуумных покрытий.

Целью изобретения является повышение выходной мощности и энергии излучения лазера при одновременном упрощении способа.

Цель достигается тем, что в способе, включающем изготовление полупроводниковой пластины из селенида цинка и оптического резонатора, состоящего из двух зеркал, одно из которых глухое, глухое зеркало изготовляют на поверхности, соответствующей кристаллографическому направлению [], путем травления этой поверхности в концентрированной соляной кислоте при температуре кипения в течение 3-5 мин.

Отличие заявляемого способа изготовления лазера от известных в литературе состоит в изготовлении глухого зеркала путем химического травления поверхности B () в кипящей соляной кислоте в течение 3-5 мин.

Необходимость введения операции определения кристаллографической полярности поверхностей вызвана тем, что микрорельеф поверхности, выполняющий функцию глухого зеркала, образуется при травлении только на поверхности B () пластин селенида цинка.

Режим операции травления подобран экспериментально. Установлено, что травление B-поверхности селенида цинка с образованием необходимого рельефа возможно только в кипящей соляной кислоте (t 60oC). При понижении температуры меняется характер травления и резко снижается скорость травления, в силу чего снятие нарушенного слоя и образование рельефа с требуемыми характеристиками невозможно. Время травления t=3-5 мин обусловлено сравнительно невысокой скоростью травления поверхности () кристаллов селенида цинка (vSe=1,7 мкм/мин). Указанное время необходимо для снятия нарушенного при шлифовке слоя и формирования микрорельефа в виде ограненных пирамид с характерными размерами 1-10 мкм. При t<3 мин не успевает возникнуть огранка пирамид и они имеют округлую форму, при t>5 мин размеры пирамид превышают оптимальные, рельеф становится сравнимым с толщиной активного слоя, нарушается плоскостность поверхности, что ухудшает свойства лазера.

Из вышеуказанного следует существенность отличий заявляемого способа от прототипа и известных аналогов.

Предлагаемый способ осуществляется следующим образом. Любым из известных способов определяют кристаллографическую полярность поверхностей пластины селенида цинка. После этого сторону, соответствующую плоскости (111) (поверхность A), шлифуют, полируют механически и химико-механически (химико-динамически). Затем пластину приклеивают к кварцевой или сапфировой подложке стороной A. Функцию выходного зеркала при этом выполняет многослойное диэлектрическое покрытие или естественная поверхность A полупроводниковой пластины. Далее пластину шлифуют до получения необходимой толщины. Оптимальная толщина определяется характеристиками электронного пучка и для энергии электронов 200 кэВ составляет около 200 мкм. После этого пластину разрезают на элементы любым известным способом, например с помощью скрайбера. Размер стороны элемента составляет около 1 мм. Глубина канавок больше глубины проникновения электронов (80-100 мкм), но меньше 2/3 толщины пластины. Затем поверхность () (поверхность B) пластины травят в концентрированной соляной кислоте при температуре кипения (t 60оС) в течение 3-5 мин с последующей промывкой в дистиллированной воде. На этом изготовление лазера заканчивается.

В результате операции травления на стороне B пластины возникает микрорельеф в виде трехгранных пирамид с характерным размером 1-10 мкм, эффективно отражающий излучение, распространяющееся вдоль оси резонатора и под малыми углами к ней, и пропускающий излучение, направленное под большими углами к оси резонатора, чем достигается подавление усиления спонтанного шума и внеосевых мод. Это, в свою очередь, способствует увеличению КПД, мощности и энергии излучения лазера.

Для обоснования технико-экономической эффективности заявляемого способа по сравнению с прототипом были проведены испытания устройства, изготовленного на основе селенида цинка по способу-прототипу, и устройства, изготовленного предлагаемым способом.

В качестве исходного материала использовались монокристаллические пластины селенида цинка. Источником электронов служила электронная пушка с длительностью импульса =1,5 нс, энергией электронов 200 кэВ, плотностью тока пучка 1 кА/см2. Полный выход излучения измерялся с помощью калиброванного оптико-акустического измерителя. Результаты испытаний приведены в таблице. Площадь облучаемой поверхности везде была 1 см2.

Из сравнения результатов видно, что заявляемый способ позволяет при прочих равных условиях повысить выходную мощность и энергию излучения устройства в 2,5-10 и более раз в зависимости от энергии накачки.

Технико-экономическая эффективность заявляемого способа по сравнению с прототипом обусловлена также и снижением трудовых и материальных затрат на изготовление лазера, поскольку исключается трудоемкая процедура нанесения зеркал на входную поверхность излучателя, требующая дорогостоящего оборудования и больших затрат времени, а также трудоемкая операция механической и химико-динамической полировки этой же поверхности пластины. Дополнительная операция определения кристаллографической полярности поверхностей не приводит к существенному возрастанию трудозатрат, поскольку такое определение можно провести, например, визуально после травления пластины в течение 1-2 мин в кипящей соляной кислоте. Достоинством способа является также то, что он не требует применения драгоценного металла - серебра, а также то, что при отсутствии серебряного покрытия повышается радиационная стойкость излучателя, поскольку это покрытие имеет меньший порог разрушения, чем поверхность кристалла.

П р и м е р 1. Подложку изготавливают из пластины плавленого кварца диаметром 40 мм, толщиной 3 мм, посредством шлифовки и полировки по любой технологии. Пластину селенида цинка диаметром 35 мм, толщиной 1,5 мм травят в течение 2 мин в концентрированной соляной кислоте при температуре кипения с последующей промывкой в воде. По внешнему виду поверхностей после травления судят о кристаллографической полярности поверхностей. Затем поверхность A шлифуют, полируют механически и химико-механически в потоке соляной кислоты. После этого пластину наклеивают оптическим клеем ОК поверхностью A к подложке. Затем пластину со стороны B шлифуют до достижения толщины 200 мкм и разрезают на элементы размером 1х1 мм2. Далее поверхность B пластины травят в концентрированной кипящей соляной кислоте в течение 3 мин, а затем промывают в дистиллированной воде. Параметры устройства соответствуют приведенным в таблице.

П р и м е р 2. Устройство изготавливают аналогично примеру 1, однако время травления поверхности B составляет 5 мин. Параметры полученного устройства такие же, как и у устройства, изготовленного в примере 1. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ЛАЗЕРА С НАКАЧКОЙ ЭЛЕКТРОННЫМ ПУЧКОМ, включающий изготовление полупроводниковой пластины из селенида цинка и оптического резонатора, состоящего из двух зеркал, одно из которых глухое, отличающийся тем, что глухое зеркало изготавливают на поверхности, перпендикулярной кристаллографическому направлению III, путем травления этой поверхности в концентрированной соляной кислоте при температуре ее кипения в течение 3 - 5 мин.


ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к лазерным квантовым генераторам, а именно лазеры и лазерное оборудование:

- твердотельные полупроводниковые лазеры

- газовые лазеры

- химические лазеры

- практическое применение в промышленности, науке и в быту газовых, твердотельных и химических лазеров.


Лазеры. Лазерное оборудование






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+газовый -лазер".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "лазер" будут найдены слова "лазеры", "лазерный" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("лазер!").



Рейтинг@Mail.ru