МОЩНЫЙ CO*002-ЛАЗЕР НА СМЕСИ АТМОСФЕРНОГО ВОЗДУХА С УГЛЕКИСЛЫМ ГАЗОМ

МОЩНЫЙ CO*002-ЛАЗЕР НА СМЕСИ АТМОСФЕРНОГО ВОЗДУХА С УГЛЕКИСЛЫМ ГАЗОМ


RU (11) 2086064 (13) C1

(51) 6 H01S3/22 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 25.10.2007 - действует 

--------------------------------------------------------------------------------

(21) Заявка: 95110655/25 
(22) Дата подачи заявки: 1995.06.27 
(45) Опубликовано: 1997.07.27 
(56) Список документов, цитированных в отчете о поиске: Басов Н.Г. и др. Электроионизационный СО2-лазер замкнутого цикла непрерывного действия. Квантовая электроника, 1979, т. 6, N 4, с. 772. Артамонов А.В. и др. СО2-лазер на атмосферном воздухе. Квантовая электроника, 1977, т. 4, N 1, с. 184. 
(71) Заявитель(и): Троицкий институт инновационных и термоядерных исследований 
(72) Автор(ы): Востриков В.Г.; Красюков А.Г.; Наумов В.Г.; Шашков В.М. 
(73) Патентообладатель(и): Троицкий институт инновационных и термоядерных исследований 

(54) МОЩНЫЙ CO*002-ЛАЗЕР НА СМЕСИ АТМОСФЕРНОГО ВОЗДУХА С УГЛЕКИСЛЫМ ГАЗОМ 

Использование: мощный СО2 - лазер на смеси атмосферного воздуха с углекислым газом может быть использован в лазерных технологических комплексах для промышленного применения. Сущность изобретения: создан лазер с возбуждением рабочей смеси несамостоятельным разрядом. В качестве рабочей смеси использована смесь атмосферного воздуха с углекислым газом. Ионизация рабочей среды осуществляется пучком электронов, создаваемым электронным ускорителем, работающим в импульсно-периодическом режиме. При этом рабочее давление в газоразрядной камере составляет 100 - 1000 Торр, а плотность тока пучка электронов в импульсе на выходе электронного ускорителя удовлетворяет условию: Je[мА/см2]10-5p2[Topp2]. 1 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к области лазерной техники, а именно к технике создания мощных электроразрядных CO2- лазеров и автономных мобильных технологических комплексов на их основе.

Известен CO2-лазер мощностью порядка 10 кВт [1] работающий на смеси CO2-N2-He при давлении около 50 Торр. Лазер выполнен на основе замкнутого газового цикла. Накачка рабочей среды осуществляется несамостоятельным разрядом, поддерживаемым пучком электронов, при этом работа лазера осуществляется в непрерывном режиме.

Существенным недостатком лазера с замкнутым газовым циклом является необходимость охлаждения рабочего газа, которое в [1] обеспечивается специальным теплообменником, охлаждаемым водой. Это приводит к заметному ухудшению массогабаритных характеристик, так как именно размеры теплообменника в значительной степени определяют габариты и, следовательно, вес лазера. Кроме того, следует отметить, что реализация подобной схемы в автономных условиях приводит к дополнительным трудностям, связанным с необходимостью поддержания температурного режима теплоносителя воды.

Другим существенным недостатком такого лазера является то, что понятие замкнутого газового цикла является весьма условным. При длительной работе происходит снижение выходной мощности из-за плазмохимических процессов, приводящих к отравлению рабочей среды [1] Для борьбы с этим явлением производится частичное обновление газовой смеси, составляющее обычно 1% по объему от общего расхода газа, или применение дорогостоящих каталитических регенераторов, или добавление в рабочую смесь чрезвычайно дорогостоящих газов (ксенон) [1] При эксплуатации лазера в автономных условиях требование поддержания постоянной выходной мощности приводит к необходимости введения в его состав дополнительных средств жизнеобеспечения, что сказывается на массогабаритных характеристиках лазерного комплекса.

Известен CO2-лазер на смеси атмосферного воздуха и CO2 c накачкой рабочей среды непрерывным самостоятельным разрядом [2] Рабочее давление газа в газоразрядной камере ограничено при этом величиной 30 60 Торр из-за развития различных неустойчивостей, обусловленных физикой самостоятельного разряда. Открытый газовый цикл, используемый в [2] при низком рабочем давлении требует для выброса отработанного газа в атмосферу повышенной степени сжатия газа в прокачном устройстве (к). Это приводит к значительным затратам энергии на прокачку газа по сравнению с энергией, вкладываемой в разряд, что снижает общий КПД и ухудшает массогабаритные характеристики лазера, так как при таких к = 15 - 25 средство прокачки существенно превосходит остальные части лазера как по массе, так и по габаритам.

Техническим результатом изобретения является снижение эксплуатационных расходов, повышение общего КПД, улучшение массогабаритных характеристик лазера, а также облегчение условий его транспортировки и работы в автономных условиях.

Указанный результат достигается тем, что в мощный CO2-лазер на смеси атмосферного воздуха с углекислым газом, содержащий газоразрядную камеру (ГРК) с катодом и анодом, оптический резонатор, систему электропитания ГРК, соединенную с катодом и анодом и прокачное устройство с открытым газовым циклом, введено устройство ионизации (УИ). Конструктивно оно выполнено в виде электронного ускорителя, который герметично присоединен к ГРК со стороны катода так, что электронный пучок ускорителя через катод, выполненный частично прозрачным для электронного пучка, поступает в пространство между катодом и анодом. УИ соединено с источником питания УИ, позволяющим обеспечивать работу УИ в импульсно-периодическом режиме. При этом рабочее давление в ГРК составляет 100 1000 Торр, а плотность тока пучка электронов в импульсе на выходе электронного ускорителя удовлетворяет условию:

Je[мА/см2] 10-5 p2 [Topp2] (1)

Блок-схема предлагаемого устройства приведена на чертеже, где обозначено: 1 форкамера; 2 система хранения CO2; 3 газоразрядная камера (ГРК); 4 катод; 5 анод; 6 устройство ионизации (УИ); 7 источник питания (УИ); 8 система электропитания ГРК; 9 оптический резонатор; 10 - прокачное устройство.

Снижение эксплуатационных расходов, повышение КПД и улучшение массогабаритных характеристик лазера по сравнению с [2] достигается за счет существенного увеличения рабочего давления (по крайней мере до 150 300 Торр). Повышение давления приводит к уменьшению габаритных размеров, а следовательно, и веса лазера. Кроме того, существенно снижается требуемая степень сжатия прокачного устройства (до величины к = 2,5 - 5), что приводит к уменьшению его веса, снижению расхода мощности на прокачку газа и тем самым к увеличению общего КПД лазера.

Облегчение условий транспортировки лазера и работы в автономных условиях достигается по сравнению с [2] за счет существенного уменьшения веса и габаритов лазера, а по сравнению с [1] как за счет улучшения массогабаритных характеристик, так и за счет замены азота и гелия в рабочей смеси на атмосферный воздух, так как при этом отпадает необходимость перевозить вместе с лазером значительные количества рабочих газов (N2 и He).

Отметим, что простая замена в лазере [1] рабочей смеси CO2-N2-He на смесь CO2 с атмосферным воздухом при том же рабочем давлении (порядка 50 Торр) не приводит к достижению указанных выше технических результатов. Положительный технический результат от использования смеси атмосферного воздуха с CO2 может быть достигнут только при существенном повышении рабочего давления (например, до 150 300 Торр).

Однако эффективное возбуждение рабочей смеси CO2 с атмосферным воздухом в несамостоятельном разряде непрерывного действия, поддерживаемого пучком электронов, при повышенном давлении связано с существенными техническими сложностями.

Физическая причина этого состоит в том, что при повышении рабочего давления (p) скорость ионизации газа пучком электронов растет пропорционально p, а скорость гибели электронов в воздухе растет пропорционально p2, так как определяется процессом трехтельного прилипания электронов к кислороду, поэтому концентрация электронов в разряде уменьшается пропорционально 1/р. Поддержание эффективности возбуждения с ростом давления требует не только сохранения, но и увеличения мощности накачки (и концентрации электронов), так как скорость релаксационных потерь в разряде растет пропорционально р. Таким образом, повышение давления требует увеличения плотности тока электронного пучка пропорционально p2. Это приводит к тому, что в непрерывном лазере не удается поднять давление выше порядка 75 100 Торр, что связано с ограничением средней плотности тока электронного пучка величиной примерно 70 мкА/см2 из-за предельно допустимой тепловой нагрузки на выводном устройстве электронного ускорителя [1] При более высоком давлении эффективное возбуждение рабочей смеси лазера может быть достигнуто только за счет перехода к импульсно-периодическому режиму работы несамостоятельного разряда. При этом можно реализовать требуемое увеличение скорости ионизации газа пучком быстрых электронов в импульсе пропорционально p2 при сохранении среднего тока пучка за счет соответствующего подбора длительности импульсов и частоты их повторения, и эффективное возбуждение газа оказывается возможным при давлениях 150 300 Торр и выше. При таких давлениях для прокачки рабочей смеси с выхлопом в атмосферу требуются средства прокачки со степенью сжатия всего к = 2,5 - 5, здесь могут быть применены, например, осевые компрессоры, которые достаточно хорошо отработаны в авиационной и ракетной технике и обладают приемлемыми массогабаритными характеристиками.

Величина плотности тока пучка электронов в импульсе, указанная выше в соотношении (1), которая необходима для эффективного возбуждения рабочей смеси, была найдена и подтверждена экспериментально.

Проведен детальный сравнительный анализ массогабаритных характеристик предлагаемого лазера и лазеров, выполненных по схемам [1] и [2] Он показал, что при одинаковой выходной мощности предлагаемый лазер на смеси атмосферного воздуха и CO2 с открытым газовым циклом при рабочем давлении 150 300 Торр обладает лучшими массогабаритными характеристиками как по сравнению с [1] так и с [2]

Работа устройства осуществляется следующим образом.

Атмосферный воздух через воздухозаборники поступает в форкамеру 1, где смешивается с углекислым газом, подаваемым из специальной системы хранения 2. Подготовленная рабочая смесь поступает в газоразрядную камеру (ГРК) 3, где между катодом 4 и анодом 5 осуществляется электрический несамостоятельный разряд, который обеспечивает необходимое для лазерной генерации возбуждение (накачку) рабочей среды. Возбуждение рабочей среды в электрическом разряде состоит в преобразовании электрической энергии в энергию колебательного возбуждения молекул азота (содержащихся в атмосферном воздухе) и углекислого газа, входящих в состав рабочей среды. Поддержание несамостоятельного разряда обеспечивается путем создания ионизации в пространстве между катодом и анодом ГРК за счет использования пучка быстрых электронов, формируемого в устройстве ионизации (УИ) 6. Это реализовано в виде электронного ускорителя, который герметично присоединен к ГРК со стороны катода так, что электронный пучок ускорителя поступает в пространство между катодом и анодом через катод, выполненный частично прозрачным для электронного пучка. УИ соединено с источником питания УИ 7, который обеспечивает работу УИ в импульсно-периодическом режиме. Электрическая энергия, необходимая для возбуждения рабочей среды, поставляется системой электропитания ГРК 8. Оптический резонатор 9 представляет собой систему зеркал и служит для преобразования колебательной энергии молекул N2 и CO2 в энергию направленного лазерного излучения. При этом расслоение нижнего лазерного уровня обеспечивается молекулами воды, которая обычно присутствует в атмосферном воздухе в достаточном количестве. Рабочая концентрация CO2 обычно составляет 1 10% Прокачное устройство 10 служит для создания в ГРК необходимого давления и скорости потока рабочего газа и выброса отработанного газа в атмосферу.

Таким образом, впервые создан мощный CO2-лазер на смеси атмосферного воздуха с углекислым газом с возбуждением рабочей среды несамостоятельным разрядом, поддерживаемым пучком электронов, работающий в импульсно-периодическом режиме. Найдены диапазон рабочих давлений и необходимая плотность тока пучка электронов в импульсе, обеспечивающие эффективную работу такого лазера. При этом достигается снижение эксплуатационных расходов, повышение общего КПД, улучшение массогабаритных характеристик лазера, а также облегчение условий его транспортировки и работы в автономных условиях.

Одной из основных областей применения такого лазера является создание на его основе мобильных лазерных технологических комплексов для работы в автономных условиях.

Использованные источники информации

1. Басов Н. Г. Бабаев И.К. Данилычев В.А. и др. Электроионизационный CO2-лазер замкнутого цикла непрерывного действия. Квантовая электроника, т. 6, 1979, N 4, с. 772.

2. Артамонов А. В. Веденов А.А. Витшас А.Ф. Наумов В.Г. CO2-лазер на атмосферном воздухе. Квантовая электроника, т.4, 1977, N 1, с.184. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



Мощный СО2-лазер на смеси атмосферного воздуха с углекислым газом, содержащий газоразрядную камеру (ГРК) с катодом и анодом, оптический резонатор, систему электропитания ГРК, соединенную с катодом и анодом, и прокачное устройство с открытым газовым циклом, отличающийся тем, что в состав лазера введено устройство ионизации (УИ) в виде электронного ускорителя, который герметично присоединен к ГРК со стороны катода так, что электронный пучок ускорителя через катод, выполненный частично прозрачным для электронного пучка, поступает в пространство между катодом и анодом и соединен с источником питания УИ, который обеспечивает работу УИ в импульсно-периодическом режиме, при этом рабочее давление в ГРК составляет P 100 1000 Торр, а плотность тока пучка электронов в импульсе на выходе электронного ускорителя удовлетворяет условию

Ie[mA/см2] 10-5P2 [Тoрр2]


ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к лазерным квантовым генераторам, а именно лазеры и лазерное оборудование:

- твердотельные полупроводниковые лазеры

- газовые лазеры

- химические лазеры

- практическое применение в промышленности, науке и в быту газовых, твердотельных и химических лазеров.


Лазеры. Лазерное оборудование






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+газовый -лазер".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "лазер" будут найдены слова "лазеры", "лазерный" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("лазер!").



Рейтинг@Mail.ru