ГАЗОРАЗРЯДНОЕ УСТРОЙСТВО

ГАЗОРАЗРЯДНОЕ УСТРОЙСТВО


RU (11) 2083062 (13) C1

(51) 6 H05H1/00 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 25.10.2007 - прекратил действие 

--------------------------------------------------------------------------------

(21) Заявка: 94022782/25 
(22) Дата подачи заявки: 1994.06.10 
(45) Опубликовано: 1997.06.27 
(56) Список документов, цитированных в отчете о поиске: Авторское свидетельство СССР N 321879, кл. H 01 J 37/08, 1971. Журавлев Б.И. и др. ПТЭ, 1993, N 3, с. 215 - 218. 
(71) Заявитель(и): Бурятский институт естественных наук СО РАН 
(72) Автор(ы): Гырылов Е.И.; Семенов А.П. 
(73) Патентообладатель(и): Бурятский институт естественных наук СО РАН 

(54) ГАЗОРАЗРЯДНОЕ УСТРОЙСТВО 

Использование: в плазменной эмиссионной электронике, в частности в генераторах плазмы, в технологических газоразрядных источниках ленточных пучков. Сущность изобретения: газоразрядное устройство состоит из полого цилиндрического катода 1, двух катодов 4, 5, выполненных из магнитной стали, и двух медных цилиндрических анодов 2, 3, расположенных соосно по обе стороны от полого катода 1. Магнитная система содержит два кольцевых постоянных магнита 6, 7, размещенных с возможностью образования двух магнитных полей, каждая из которых включает торец полого катода, плоский катод и размещенный между ними кольцевой постоянный магнит. Торцы полого катода, плоские катоды и цилиндрические аноды образуют две симметричные разрядные камеры. Вдоль полого катода расположено эмиссионное отверстие, выполненное в виде щели. На середине полого катода расположен канал для подачи рабочего газа. В корпусе газоразрядного устройства имеются каналы для принудительного проточного охлаждения водой. 2 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к плазменной эмиссионной электронике, в частности к конструкции генераторов плазмы, способной эмитировать заряженные частицы, и может быть использовано в технологических газоразрядных источниках ленточных пучков электронов и ионов.

Известные эмиттеры аксиальных пучков заряженных частиц с отбором электронов и ионов с поверхности накаленного твердого тела или с поверхности плазмы [1, 2 и 3]

Недостатками термоэмиттеров являются их низкая надежность и сложность конструкции, а плазменных эмиттеров их недостаточная однородность эмиссии.

Известно газоразрядное устройство с эмитирующей плазменной поверхностью прямоугольной формы [4] выбранное в качестве прототипа, в котором для генерации ионов и электронов используется контрагированный разряд с холодным полым катодом и двухкаскадной схемой последовательного объемного размножения электронов. Разрядная камера содержит полый катод, анод, дополнительный анод, электромагнитную систему, состоящую из четырех соленоидов. Эмиттерный электрод представляет собой прямоугольник, перфорированный 267 отверстиями, и расположен перпендикулярно оси полого катода.

Недостатками известного устройства являются сложность конструкции, обусловленная применением дополнительного анода и нескольких соленоидов, малый коэффициент использования плазмы в качестве эмиссионной поверхности, сильная неоднородность плазмы в области токоотбора, из-за неоднородного радиального распределения плотности плазмы в полом катоде.

Цель изобретения упрощение газоразрядного устройства, улучшение однородности и эффективности использования плазмы.

Цель достигается тем, что в газоразрядном устройстве, содержащем систему электродов, включающую цилиндрический полый катод, образующую две разрядные камеры, и магнитную систему, инициирование разряда в катодной цилиндрической полости происходит с обоих ее открытых торцов вспомогательными разрядами, возбуждаемыми двумя симметричными разрядными камерами. Каждая разрядная камера образована цилиндрическим анодом, плоским катодом и торцевым срезом полого цилиндрического катода, между плоским катодом и торцевым срезом полого катода расположен кольцевой постоянный магнит. Торец полого цилиндрического катода, кольцевой постоянный магнит и плоский катод образуют магнитную цепь. Рабочий газ подается через канал в полом катоде, эмиссионное отверстие выполнено в виде щели на стенке полого катода параллельно его оси, что обеспечивает возможность эффективного использования плазмы газоразрядного устройства для генерации ленточного пучка заряженных частиц. Сопоставление с прототипом позволяет сделать вывод, что предлагаемое газоразрядное устройство, содержащее систему электродов, включающую цилиндрический полый катод, образующую две разрядные камеры, и магнитную систему, отличается тем, что система электродов включает дополнительно два цилиндрических анода и два плоских катода, установленных в двух сторон от торцов полого катода и соосно полому катоду, при этом магнитная система содержит два кольцевых постоянных магнита, размещенных с возможностью образования двух магнитных цепей, каждая из которых включает торец полого катода, кольцевой постоянный магнит и плоский катод, причем каждый кольцевой постоянный магнит расположен между торцом полого катода и плоским катодом, а в боковой стенке полого катода вдоль его оси симметрии выполнена щелевая эмиссионная прорезь.

На фиг. 1 показано предлагаемое устройство; на фиг. 2 разрез А-А на фиг. 1.

Газоразрядное устройство содержит катод 1, выполненный из магнитной стали в виде цилиндра диаметром 4 мм и длиной 66 мм. Соосно полому катоду установлены медные цилиндрические аноды 2 и 3 диаметром 12 мм и длиной 12 мм, плоские катоды 4 и 5. Плоские катоды 4 и 5, аноды 2 и 3 и торцевые срезы полого катода 1 образуют две симметричные разрядные камеры (ячейки Пеннинга), индукция магнитного поля в полости анодных цилиндров, равная 0,16 Тл, обеспечивается постоянными кольцевыми магнитами 6 и 7. На середине полого катода расположен канал диаметром 2 мм для подачи рабочего газа. На стенке полого катода параллельно его оси выполнена щель длиной 48 мм и шириной 2 мм. В корпусе газоразрядного устройства имеются каналы для принудительного охлаждения проточной водой.

Газообразное устройство работает следующим образом.

Сначала устанавливают необходимое рабочее давление газа в пределах 5-10 Па. Затем от отдельных источников питания с плавнорегулируемым напряжением подают напряжение до 1 кВ между анодом 2 и катодами 1 и 4, и между анодом 3 и катодами 1 и 5. При этом возбуждается пеннинговский разряд. При проникновении плазмы в полый катод, напряжение горения разряда уменьшается. Устанавливают одинаковые анодные токи разряда в обеих ячейках, при этом неоднородной плазмы по длине полого катода уменьшается (до 5%). Аксиальное распределение плотности плазмы оценивалось по току одиночного подвижного зонда, перемещаемого вдоль эмиссионной щели. Регулируя анодные разрядные токи в ячейках, можно управлять аксиальным распределением плотности плазмы.

Инициирование низковольтного тлеющего разряда низкого давления в магнитном поле с холодным полым катодом двумя вспомогательными разрядами, возбуждаемыми в периферийных симметричных разрядных камерах, позволяет создать высоко однородную эмитирующую плазму в цилиндрическом полом катоде. Эмиссионная щель, выполненная на стенке полого катода, способствует эффективному использованию плазмы. Газоразрядное устройство просто по конструкции, что снижает металлоемкость, трудозатраты при изготовлении и стоимость.

Источники изобретения

1. Авторское свидетельство N 385347, 1973.

2. Авторское свидетельство N 486600, 1974.

3. Авторское свидетельство N 321879, 1971.

4. Журавлев Б.И. Прилепский В.В. Горлатов В.С. Технологический источник ионов. ПЭТ, 1993, N 3, с. 215 218.0 


ФОРМУЛА ИЗОБРЕТЕНИЯ



Газоразрядное устройство, содержащее систему электродов, включающую цилиндрический полый катод, образующую две разрядные камеры, и магнитную систему, отличающееся тем, что система электродов включает дополнительно два цилиндрических анода и два плоских катода, установленных с двух сторон от торцов полого катода и соосно полому катоду, при этом магнитная система содержит два кольцевых постоянных магнита, размещенных с возможностью образования двух магнитных цепей, каждая из которых включает торец полого катода, кольцевой постоянный магнит и плоский катод, причем каждый кольцевой постоянный магнит расположен между торцом полого катода и плоским катодом, а в боковой стенке полого катода вдоль его оси симметрии выполнена щелевая эмиссионная прорезь.


ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к лазерным квантовым генераторам, а именно лазеры и лазерное оборудование:

- твердотельные полупроводниковые лазеры

- газовые лазеры

- химические лазеры

- практическое применение в промышленности, науке и в быту газовых, твердотельных и химических лазеров.


Лазеры. Лазерное оборудование






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+газовый -лазер".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "лазер" будут найдены слова "лазеры", "лазерный" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("лазер!").



Рейтинг@Mail.ru