ЭЛЕКТРОИОНИЗАЦИОННЫЙ ГАЗОВЫЙ ЛАЗЕР С НЕСАМОСТОЯТЕЛЬНЫМ РАЗРЯДОМ И ПРОДОЛЬНОЙ КОНФИГУРАЦИЕЙ ПРОКАЧКИ ГАЗОВОЙ СМЕСИ

ЭЛЕКТРОИОНИЗАЦИОННЫЙ ГАЗОВЫЙ ЛАЗЕР С НЕСАМОСТОЯТЕЛЬНЫМ РАЗРЯДОМ И ПРОДОЛЬНОЙ КОНФИГУРАЦИЕЙ ПРОКАЧКИ ГАЗОВОЙ СМЕСИ


RU (11) 2065242 (13) C1

(51) 6 H01S3/0977 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 25.10.2007 - прекратил действие, но может быть восстановлен 

--------------------------------------------------------------------------------

(21) Заявка: 93015021/25 
(22) Дата подачи заявки: 1993.03.22 
(45) Опубликовано: 1996.08.10 
(56) Список документов, цитированных в отчете о поиске: 1. Патент США N 3702973, кл. H 01 S 3/00, 1975. 2. Joder M.J. et al. Theoretical and experimental performance of high-power sustained electron laser. Journal of appl. physics.- v.49, N 6. 
(71) Заявитель(и): Научно-исследовательский институт электрофизической аппаратуры им.Д.В.Ефремова 
(72) Автор(ы): Бодакин Л.В.; Макаревич А.А.; Манукян Г.Ш.; Туманов И.А. 
(73) Патентообладатель(и): Научно-исследовательский институт электрофизической аппаратуры им.Д.В.Ефремова 

(54) ЭЛЕКТРОИОНИЗАЦИОННЫЙ ГАЗОВЫЙ ЛАЗЕР С НЕСАМОСТОЯТЕЛЬНЫМ РАЗРЯДОМ И ПРОДОЛЬНОЙ КОНФИГУРАЦИЕЙ ПРОКАЧКИ ГАЗОВОЙ СМЕСИ 

Использование: СО2-лазеры с замкнутым контуром прокачки рабочей среды и ионизацией газа электронным пучком, предназначенные для использования в металлообрабатывающей, горнодобывающей и других отраслях промышленности. Сущность изобретения: лазер содержит расположенные в газоразрядной камере катодный и анодный электроды, выполненные в виде решеток, на которые поток газа направлен по направлению электрического поля между электродами, пучок электронов от устройства ионизации направлен противоположно направлению электрического поля, а оптическая ось резонатора направлена перпендикулярно потоку газа и электрическому полю, в пространстве между электродами непосредственно в зоне разряда перпендикулярно к плоскостям электродов установлены диэлектрические экраны, выполненные из пористой керамики, обращенные развитой поверхностью к внутренней области газоразрядной камеры. 2 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к СО2-лазерам с замкнутым контуром прокачки рабочей среды и ионизацией газа электронным пучком, предназначенным для использования в металлообрабатывающей, горнодобывающей и других отраслях промышленности.

Известен электроионизационный лазер с поперечной прокачкой газовой смеси [Пат. США 3702973, Н01S3/00, выдан 14.11.75 г] В газоразрядной области лазера установлены катод и анод прямоугольной формы, между которыми прокачивается газовая смесь N2-CO2-He. Перпендикулярно потоку газа в межэлектродное пространство со стороны катода, имеющего сетчатую структуру, направлен пучок электронов, а оптическая ось резонатора перпендикулярна пучку электронов и потоку газа.

Недостатками конструкции электроионизационных лазеров с поперечным разрядом являются:

наличие протяженных приэлектродных перегретых погранслоев рабочей смеси из-за прокачки смеси вдоль анодного и катодного электродов;

наличие периферийных участков энерговклада вдоль потока газа, а также на входе и выходе из газоразрядной области вследствие рассеяния ионизирующего электронного пучка на выводном устройстве источника электронов в газе;

повышенные турбулентные пульсации плотности газа и показателя преломления вследствие требуемой для такой схемы разряда повышенной скорости газа;

расплывание тепловой пробки расширившегося газа вдоль потока за счет турбулентности, диффузии и теплопроводности при работе в импульсно-периодическом режиме;

высокая мощность, требуемая для системы прокачки газовой смеси;

повышенные линейные размеры зоны энерговклада вдоль потока.

От вышеуказанных недостатков свободна продольная схема разряда. Известен электроионизационный лазер [Joder M.J. et al, Theoretical and Experimental Performance of High-Power-Sustained Electron Laser. Journal of Applied Physics, 1978, vol. 49, N 6] содержащий расположенные в газоразрядной камере катодный и анодные электроды, выполненные в виде решеток. Поток газа направлен в межэлектродное пространство со стороны анода через электроды, т.е. по направлению электрического поля. В противоположном направлении со стороны катода в это пространство подан пучок электронов через выводное устройство источника ионизации. Оптическая ось резонатора в таком лазере направлена перпендикулярно потоку газа и электрическому полю.

Приведенная конструкция не обеспечивает достаточной однородности газового потока, вносит ограничения по напряженности электрического поля, а также не обеспечивает необходимой однородности электрического разряда непосредственно в зоне разряда вследствие удаленности межэлектродных стенок газоразрядной камеры.

Изобретение направлено на решение задачи создания промышленной лазерной установки с продольной схемой разряда при формировании однородного профиля скорости газового потока в зоне разряда и пространственном ограничении зоны ионизации газа, т.е. на создание лазерной установки с повышенной однородностью и устойчивостью разряда.

В электроионизационном газовом лазере с несамостоятельным разрядом и продольной конфигурацией прокачки газовой смеси, содержащем расположенные в газоразрядной камере катодный и анодный электроды, выполненные в виде решеток, на которые поток газа направлен по направлению электрического поля между электродами, пучок электронов направлен противоположно направлению электрического поля, а оптическая ось резонатора направлена перпендикулярно потоку газа и электрическому полю, указанная задача решается тем, что в пространстве между электродами непосредственно в зоне разряда перпендикулярно к плоскостям электродов установлены диэлектрические экраны, выполненные из пористой керамики. Структура этой керамики сформирована из тонких волнистых керамических слоев с образованием между слоями ячеистых промежутков с развитой поверхностью. Экран устанавливается так, чтобы развитая поверхность с ячеистыми промежутками являлась внутренней боковой стенкой газоразрядной камеры.

Техническим результатом изобретения является повышение мощности лазерного излучения, уменьшение его угловой расходимости, что приводит к увеличению яркости излучения в дальней зоне. Это обеспечивается пространственным ограничением зоны энерговклада диэлектриком из пористой керамики.

Изобретение поясняется чертежами, где на фиг.1 приведено схематическое изображение предлагаемого лазера, а на фиг.2 изображен фрагмент блока пористой керамики, из которых набираются диэлектрические экраны, ограничивающие зону энерговклада.

В корпусе лазера 1 в газоразрядной камере (фиг.1) установлены на расстоянии друг от друга катодный электрод 2 и анодный электрод 3, имеющие прямоугольную форму и решетчатую структуру. Катодный электрод заземлен, а к анодному электроду 3 подключен высоковольтный ввод 4, к которому подведено напряжение 15-40 кВ (в зависимости от давления рабочей смеси), формирующее электрическое поле в межэлектродном пространстве. Направление поля показано стрелкой 5. Между краями электродов 2 и 3 установлены диэлектрическими экраны 6, образованные блоками из пористой керамики, установленными перпендикулярно к плоскостям электродов. От источника ионизации 7 (в качестве которого может быть использован широкоапертурный электронный ускоритель) в зону разряда направлен пучок электронов 8. От блока прокачных устройств 9 в камеру через анодный электрод направлен газовый поток 10 (смесь газов CO2-N2-He). В корпусе лазера 1 между блоком прокачных устройств 9 и стенками корпуса установлены теплообменники 11, а между блоком прокачных устройств и анодным электродом установлены диэлектрические стенки 12. Оптическая ось 13 резонатора направлена перпендикулярно потоку газа и электрическому полю (показана знаком "+"). Это означает, что одно из зеркал резонатора находится над плоскостью чертежа, а второе под ней.

Сторона А (фиг.2) блока пористой керамики и противоположная ей сторона соприкасаются с поверхностями электродов, а сторона В образует внутреннюю поверхность газоразрядной камеры.

Устройство работает следующим образом.

Газовый поток 10 нагнетается блоком прокачных устройств 9 в зону разряда через анодный электрод 3. Одновременно зона разряда ионизируется внешним электронным пучком 8 источника ионизации 7 и накачивается энергией электрического поля 5, приложенного между электродами 3 и 2.

Керамические экраны 6 способствуют формированию однородного профиля скорости газа, препятствуют образованию в зоне разряда рассеянного неоднородного пучка электронов, а развитая мелкоячеистая структура экранов позволяет достигнуть высокую напряженность электрического поля в разряде, что в совокупности приводит к повышению однородности и устойчивости разряда, к повышению мощности энерговклада, снимаемой оптическим резонатором 13 мощности лазерного излучения и уменьшению угловой расходимости лазера. Керамика, из которой изготовлены экраны 6, обеспечивает высокую радиационную стойкость экранов и надежность работы лазера. Кроме этого, в импульсно-периодическом режиме работы лазера керамические пористые экраны служат эффективными глушителями газодинамических возмущений, т.е. повышают оптическую однородность активной среды и уменьшают угловую расходимость лазера. Из зоны разряда газовая смесь выносится через катодный электрод 2, обтекая выводное устройство источника ионизации 7, проходит через теплообменник 11 и поступает на вход блока прокачных устройств 9.

Реализация данного технического решения на экспериментальной установке в НТЦ "Энергия" НИИЭФА им. Д.В.Ефремова позволила повысить мощность лазера на 15-20% и снизить угловую расходимость лазера на 20-25% 


ФОРМУЛА ИЗОБРЕТЕНИЯ



Электроионизационный газовый лазер с несамостоятельным разрядом и продольной конфигурацией прокачки газовой смеси, содержащий расположенные в газоразрядной камере катодный и анодный электроды, выполненные в виде решеток, на которые поток газа направлен по направлению электрического поля между электродами, пучок электронов от устройства ионизации направлен противоположно направлению электрического поля, а оптическая ось резонатора направлена перпендикулярно потоку газа и электрическому полю, отличающийся тем, что в пространстве между электродами непосредственно в зоне разряда перпендикулярно плоскостям электродов установлены диэлектрические экраны, выполненные из пористой керамики, сформированной из тонких волнистых слоев, обращенные срезом, проведенным перпендикулярно волнистым слоям керамики, к внутренней области газоразрядной камеры.


ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к лазерным квантовым генераторам, а именно лазеры и лазерное оборудование:

- твердотельные полупроводниковые лазеры

- газовые лазеры

- химические лазеры

- практическое применение в промышленности, науке и в быту газовых, твердотельных и химических лазеров.


Лазеры. Лазерное оборудование






СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+газовый -лазер".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "лазер" будут найдены слова "лазеры", "лазерный" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("лазер!").



Рейтинг@Mail.ru