СПОСОБ ТЕПЛОВЫДЕЛЕНИЯ В ЖИДКОСТИ

СПОСОБ ТЕПЛОВЫДЕЛЕНИЯ В ЖИДКОСТИ


RU (11) 2061195 (13) C1

(51) 6 F24J3/00 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 25.10.2007 - прекратил действие 

--------------------------------------------------------------------------------

(14) Дата публикации: 1996.05.27 
(21) Регистрационный номер заявки: 95110302/06 
(22) Дата подачи заявки: 1995.06.21 
(45) Опубликовано: 1996.05.27 
(56) Аналоги изобретения: Физическая энциклопедия ред. Прохоров А.М. - М.: Советская энциклопедия, 1990, т.2, с.228. 
(71) Имя заявителя: Открытое акционерное общество "Русские технологии" 
(72) Имя изобретателя: Душкин А.Л.; Краснов Ю.И.; Ларионов Л.В.; Петухов В.Л. 
(73) Имя патентообладателя: Открытое акционерное общество "Русские технологии" 

(54) СПОСОБ ТЕПЛОВЫДЕЛЕНИЯ В ЖИДКОСТИ 

Используется в теплоэнергетике в аппаратах нагрева различного назначения. Сущность изобретения: способ позволяет создавать в кавитирующей в замкнутом контуре жидкости газовую подушку и последовательно варьировать ее объем и расход протекающей жидкости до установления в ней автоколебательного режима. В качестве источника кавитации может быть использована, например, центробежная форсунка. Для варьирования объема газовой подушки замкнутый контур снабжен расширительной емкостью с перемещающимся в ней поршнем. 2 з. п. ф-лы, 1 табл., 1 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к теплоэнергетике и может быть использовано как в системах отопления, так и в аппаратах нагрева различного назначения.

Известны процессы выделения избыточной энергии при вибрационном воздействии на жидкости, вызывающем кавитацию. При этом коэффициент преобразования энергии может достигать 100% и более вследствие существования глубокой взаимосвязи физической природы явления кавитации и свойств вещества субатомного и субядерного уровня.

Наиболее близким по физико-технической сущности и достигаемому результату является способ тепловыделения в жидкость путем создания в ней и последующего схлопывания кавитационных пузырей при возбуждении колебаний давления магнитострикционным или пьезоэлектрическим пульсатором.

В фазе высокого давления схлопывание пузырей происходит с большой скоростью, сравнимой со скоростью звука в жидкости, что приводит к сильному повышению в них температуры и давления пара.

Недостаток известного способа заключается в малом значении интенсивности созданного в жидкости тепловыделения относительно затраченной на создание в ней кавитации. Это объясняется как отсутствием возможности регулирования общего объема пузырей, так и низким значением КПД пульсаторов с приводом от внешнего атомного источника.

Целью изобретения является получение максимального тепловыделения в кавитирующей жидкости.

Это решается тем, что в известном способе тепловыделения, включающем создание в жидкости кавитации, новым является то, что кавитирующая жидкость циркулирует в замкнутом контуре. В жидкости создают газовую подушку и последовательно варьируют ее объем и расход протекающей жидкости до установления в ней автоколебательного режима.

Источником кавитации может служить центробежная форсунка.

Для варьирования объема газовой подушки замкнутый контур снабжен расширительной емкостью с перемещающимся в ней поршнем.

В замкнутом контуре с жидкостью газовые включения могут образовываться только при наличии в контуре объема, свободного от жидкости. При полном заполнении замкнутого контура жидкостью образование газовых включений маловероятно по причине практической несжимаемости жидкости. При достаточном свободном объеме газовые пузыри растут настолько, что сливаются в струйные течения; наступает режим суперкавитации, при котором интенсивность схлопывания сильно ослабевает и определяется медленным процессом массообмена пара и жидкости. Дополнительное образование паровых пузырей во всем гидравлическом контуре осуществляют путем развития в жидкости автоколебаний с мягким возбуждения, для которых не требуется внешний источник. Для этого помимо того, что изменяют (варьируют) объем газовой подушки, регулируют расход, а, следовательно, скорость и давление жидкости в контуре. Совместное регулирование расхода и объема кавитационных пузырей проводят до возникновения регулярных автоколебаний, характеризующихся узким спектром частот на фоне турбулентного шума.

Увеличение общего объема газовых включений и градиента изменения скорости жидкости осуществляют путем организации вихревого течения жидкости. В этом случае пузыри образуются преимущественно в толще жидкости, что обеспечивает синхронность стенок контура и, соответственно, повышает надежность способа и увеличивает долговечность устройства, с помощью которого он реализуется.

Технической результат предлагаемого способа тепловыделения в жидкости заключается в следующем. Способ обеспечивает высокий КПД преобразования в тепло вводимой в контур энергии. Реализация способа проста как в операционном исполнении, так и в конструкционном воплощении устройства его осуществления, поскольку не требует уникальных приборов и дефицитных материалов. Таким, образом, обеспечивается надежность и долговечность, а также относительная дешевизна теплонагревательных устройств, где используется способ.

Схема устройства для осуществления способа тепловыделения в жидкости представлена на чертеже.

Устройство содержит насос 1 с электрическим мотором 2, гидравлический контур 3, на котором последовательно установлена расширительная емкость 4 с поршнем 5, снабженный устройством 6, для его перемещения, заправочный штуцер 7 и кавитатор 8 центробежного типа (например, многоканальная форсунка). После кавитатора 8 в контур 3 вмонтирован теплообменник 9 для передачи тепла потребителю. Контур 3 снабжен также дросселем 10, датчиками температуры 11 и давления 12. Расширительный бачок 4 в свою очередь содержит дренажный клапан 13.

Работа устройства осуществляется следующим образом. Сначала открывают дренажный клапан 13 и через заправочный штуцер 7 гидравлический контур 3 заполняют жидкостью (водой). При этом поршень 5 с помощью устройства для его перемещения 6 устанавливают в одно из крайних положений, например, в нижнее. Затем, включают электромотор 2 и насосом 1 прокачивают жидкость через контур 3, фиксируя температуру датчиком 11 и давление его пульсации датчиком 12. Заправочный штуцер 7 и дренажный клапан 13 при этом предварительно закрывают. Далее открывают дренажный клапан 13 и устройством для перемещения 6 изменяют положение поршня 5 в расширительной емкости 4, например, постепенно сдвигают вверх. В новом положении поршня 5 закрывают дренажный клапан 13, фиксируют температуру жидкости. Одновременно измеряют расход жидкости в контуре дросселем 10 до появления колебаний давления в контуре 3. При этом последовательно добиваются увеличения температуры жидкости. Оптимальное управление этим процессом успешно может быть реализовано с помощью ЭВМ. При достижении максимальной температуры процесс регулирования заканчивают. Это регулирование необходимо осуществлять при изменении условий теплообмена теплообменника 9.

Результаты испытаний по предложенному способу тепловыделения в жидкости приведены в таблице. В испытаниях использовалась обычная вода.

Опыт G,кгс W1,кВт Т/оС f,Гц V,л W2,кВт , ________________________________________________________ 1 1,8 7,4 40 0,01 7,0 95 2 1,8 7,4 52 0,23 7,6 103 3 1,7 7,2 55 47 0,25 8,7 121

где G расходы воды;

W1- мощность/ передаваемая электродвигателем в кавитирующую воду;

Т стационарная температура воды в контуре;

f -частота автоколебаний давления в контуре;

V объем газовой подушки в контуре (общий объем контура равен 10л);

W2- тепловая мощность/ снимаемая с теплообменика;

W2/W1 КПД процесса преобразования энергии. - 


ФОРМУЛА ИЗОБРЕТЕНИЯ



1. Способ тепловыделения в жидкости, включающий создание в ней кавитации, отличающийся тем, что в кавитирующей в замкнутом контуре жидкости создают газовую подушку и последовательно варьируют ее объем и расход протекающей жидкости до установления в ней автоколебательного режима.

2. Способ по п.1, отличающийся тем, что источником кавитации служит центробежная форсунка.

3. Способ по п.1, отличающаяся тем, что для варьирования объема газовой подушки замкнутый контур снабжен расширительной емкостью с перемещающимся в ней поршнем.




ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал
Устройства и способы получения, преобразования, передачи, экономии и сохранения тепловой энергии




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска: "и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+тепло -генератор".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "тепло" будут найдены слова "тепловой", "тепловым" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("тепло!").


Теплогенераторы, устройства для нагрева жидких сред и их применение | Теплогенераторы, устройства для нагрева воздуха и других газообразных сред и их применение | Системы и способы теплоснабжения потребителя | Солнечные, ветровые, геотермальные способы генерирования и использования тепловой энергии | Альтернативные способы генерирования и использования тепловой энергии


Рейтинг@Mail.ru