СПОСОБ ПОЛУЧЕНИЯ ПОЛИРОВАЛЬНОГО РАСТВОРА

СПОСОБ ПОЛУЧЕНИЯ ПОЛИРОВАЛЬНОГО РАСТВОРА


RU (11) 2016865 (13) C1

(51) 5 C03C15/00 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 17.10.2007 - прекратил действие 

--------------------------------------------------------------------------------

(14) Дата публикации: 1994.07.30 
(21) Регистрационный номер заявки: 4891655/33 
(22) Дата подачи заявки: 1990.12.17 
(45) Опубликовано: 1994.07.30 
(56) Аналоги изобретения: 1. Авторское свидетельство СССР N 80209, кл. C 03C 15/02, 1961. 2. Авторское свидетельство СССР N 146452, кл. C 03C 15/02, 1962. 3. Патент Японии N 51-22490, кл. C 03C 15/00, 1976. 
(71) Имя заявителя: Кирово-Чепецкий химический комбинат 
(72) Имя изобретателя: Гольдинов А.Л.; Денисов А.К.; Бурин Г.М.; Абрамов О.Б.; Афанасенко Е.В.; Федорив М.П.; Сысоев Г.В. 
(73) Имя патентообладателя: Кирово-Чепецкий химический комбинат 

(54) СПОСОБ ПОЛУЧЕНИЯ ПОЛИРОВАЛЬНОГО РАСТВОРА 
Изобретение может быть использовано в стекольной промышленности при изготовлении изделий из хрустального стекла и позволяет расширить сырьевую базу путем использования отходов производства хладонов и тем самым уменьшить загрязнение окружающей среды. Сущность изобретения: раствор для химической полировки стекла получают смешением серной кислоты с фторсодержащим реагентом, в качестве которого предлагается использовать смесь фтористоводородной и соляной кислот. В этой смеси концентрацию фтористого водорода поддерживают в пределах 20 - 50%. Серную кислоту, с целью более полного удаления хлористого водорода из полировального раствора, смешивают в два приема: сначала до массового отношения HF/H2SO4 0,55 - 0,9, затем - оставшееся количество. 1 з.п. ф-лы, 2 табл. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ


Изобретение относится к технологии получения полировальных растворов для стекольной промышленности и может найти применение при изготовлении изделий из хрустального стекла.
Известен способ получения полировального раствора на основе фторсульфоновой кислоты [1].
Недостатком способа является использование остродефицитного реагента, который нашей промышленностью не выпускается.
Известен способ получения полировального раствора для химической полировки изделий из стекла путем смешения серной кислоты с фтористоводородной кислотой, то есть с фторсодержащим реагентом [2].
Недостаток известного способа заключается в использовании фтористоводородной кислоты, что резко ограничивает сырьевую базу стекольной промышленности, так как фтористоводородная кислота является дефицитным фторсодержащим реагентом.
Наиболее близким к предложенному является техническое решение, в котором раствор для травления содержит смесь фтористоводородной, серной и соляной кислот [3].
Целью изобретения является расширение сырьевой базы.
Цель достигается тем, что в известном способе получения полировального раствора для химической полировки изделий из стекла путем смешения серной кислоты с фторсодержащим реагентом, в качестве последнего используют смесь фтористоводородной и соляной кислот.
При этом концентрацию фтористого водорода в смеси фтористоводородной и соляной кислот поддерживают в пределах 20-50%, а серную кислоту, с целью более полного удаления хлористого водорода из полировального раствора, смешивают в два приема; сначала до массового отношения HF/H2SO4 0,55-0,9, затем - оставшееся количество.
Известных технических решений со сходными отличительными признаками не обнаружено.
П р и м е р 1. Для опытов в качестве фторсодержащего реагента взяли смесь фтористоводородной и соляной кислот - отход производства хладона - 22, содержащую, мас.%: HF 41,7; HCl 11,1; остальное - вода.
Указанную смесь, взятую в количестве 200 г, смешали с 575 г 95%-ной серной кислоты и 283 г воды и получили 1055 г полировального раствора N 1, содержащего, мас.%: HF 7,9; H2SO4 51,7; HCl 1,8.
По технологии полировки изделий из хрустального стекла, действующей на хрустальном заводе г. Гусь-Хрустального (Инструкции ТР-21-23-1, 4.86 с изменением N 1), используются последовательно два вида полировальных растворов:

N 1 HF 6-10% H2SO4 - 50-52%

N 2 HF 2,5-6% H2SO4 - 52-54%.
Выделяющийся при смешении хлористый водород поглотили щелочным раствором. Затем 200 г смеси фтористоводородной и соляной кислот смешали с 885 г 95% -ной серной кислоты и 502 г воды и получили 1574 г полировального раствора N 2, содержащего, мас.%:

НF 5,3; H2SO4 53,5; HCl 0,5.
Проверили эффективность приготовленных растворов.
Для этого хрустальное изделие прогрели в теплой воде до температуры 50-55оС и в специальном реакторе обработали при температуре 55оС в течение 3 мин полировальным раствором N 1. Затем изделие извлекли из реактора, промыли водой при температуре 55оС в течение 2 мин и поместили во второй реактор, где обработали полировальным раствором N 2 в течение 5 мин при 62-65оС. Изделие затем промыли сначала теплой (40оС) водой, затем водой при комнатной температуре, просушили и визуально оценили качество химической полировки: превращение матовых граней рисунка на хрустале в прозрачные, легкость снятия осадка со стекла при промывке, блеск стекла.
(Последовательность операций и их режим были установлены в соответствии с инструкцией Хрустального завода ТР-21-23-1. 4-86 с изменением N 1).
Визуальная оценка показала, что матовая поверхность граней стала прозрачной, блестящей, осадок при промывке удаляется легко со всей поверхности стекла.
Результаты этого и других аналогичных опытов, в которых изменяли вид фторсодержащего реагента (отход производства хладона 113 или искусственно приготовленная смесь фтористоводородной и соляной кислот различного состава) приведен в табл. 1 (опыты 1-6). Там же для сравнения приведен контрольный опыт по получению полировальных растворов с использованием 40%-ной фтористоводородной кислоты (опыт 7).
П р и м е р 2. Для опытов в качестве фторсодержащего реагента взяли тот же отход производства хладона 22, что и в примере 1. Указанную смесь фтористоводородной и соляной кислот, взятую в количестве 500 г, смешали с 400 г 95% -ной серной кислоты. При этом получили 848 г промежуточного продукта, содержащего, мас. %: HF 24,4; H2SO4 44,8; HCl 0,35 (потери HF при смешении 0,7 г или 0,3 отн.%). Выделяющийся при смешении хлористый водород и следы фтористого водорода поглотили щелочным раствором.
Из промежуточного продукта получили полировальные растворы N 1 и N 2.
Для этого по 400 г промежуточного продукта смешали в первом случае с 455 г 95%-ной серной кислоты и 355 г воды, а во втором случае с 1030 г 95% -ной серной кислоты и 750 г воды.
При этом получили 1210 г полировального раствора N 1 (HF 8,1 мас.%, H2SO4 51,4 мас.%; HCl 0,1 мас.%) и 2180 г полировального раствора N 2 (HF 4,5 мас.%, H2SO4 53,1 мас.%, HCl менее 0,1 мас.%).
Проверили эффективность полировальных растворов так, как описано в примере 1.
По визуальной оценке эффективность полировальных растворов высокая, не уступает растворам, приготовленным на основе 40%-ной фтористоводородной кислоты.
Результаты этого и других опытов, в которых изменяли количество серной кислотой, добавляемой на первой стадии смешения, приведены в табл.2.
Приведенные данные показывают, что полировальные растворы, получаемые по предложенному способу, по эффективности не уступают растворам, приготовленным с использованием 40% фтористоводородной кислоты. При этом допустимая минимальная концентрация фтористого водорода в смеси кислот составляет 20%. Ниже этой концентрации не обеспечивается возможность получения полировального раствора требуемого состава. Верхний предел концентрации определяется экологическими соображениями: при концентрации фтористого водорода более 50% отмечается интенсивное выделение в газовую фазу паров фтористого водорода, что осложняет работу со смесью кислот.
Концентрация соляной кислоты в смеси кислот не оказывает практического влияния на процесс получения полировального раствора, так как значительная доля хлористого водорода удаляется при смешении с серной кислотой независимо от первоначального содержания.
Эффективность полировальных растворов не зависит от того, что смешивают серную кислоту: в один или два приема.
Однако при практическом использовании предложенного способа смешение серной кислоты в два приема предпочтительнее: в этом случае остаточное содержание хлористого водорода в полировальных растворах существенно ниже, чем при введении серной кислоты за один прием. Снижение содержания хлористого водорода в полировальном растворе имеет экологическое значение: при полировке изделий не происходит выделение паров хлористого водорода в газовую фазу.
Оптимальное соотношение HF/H2SO4 в смеси после добавки части серной кислоты находится в пределах 0,55-0,9.
При соотношении менее 0,55 отмечается заметное выделение фтористого водорода в газовую фазу, при соотношении более 0,9 снижается полнота выделения хлористого водорода.
Использование смеси фтористоводородной и соляной кислот в качестве фторсодержащего реагента существенно расширяет сырьевую базу стекольной промышленности, так как в производство могут быть вовлечены отходы синтеза хладонов, представляющие собой смесь кислот, содержащую 40-50% фтористого водорода и 10-15% хлористого водорода (остальное - вода).
Как показывают опыты, проведенные с отходами производства хладона 22 и хладона 113, полировальные растворы в этих опытах по эффективности не уступают "стандартным" полировальным растворам на основе фтористоводородной кислоты. 


ФОРМУЛА ИЗОБРЕТЕНИЯ


1. СПОСОБ ПОЛУЧЕНИЯ ПОЛИРОВАЛЬНОГО РАСТВОРА путем смешения соляной, плавиковой и серной кислот, отличающийся тем, что, с целью расширения сырьевой базы, сначала готовят смесь соляной и 20 - 50%-ной плавиковой кислот, а затем вводят серную кислоту до массового отношения HF/H2SO4 0,55 - 0,9, поглощают выделяющиеся при смешивании газообразные хлористый водород и фтористый водород, затем добавляют остальное количество серной кислоты.
2. Способ по п.1, отличающийся тем, что плавиковую и соляную кислоты вводят через отход синтеза хладона.


ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян

Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к стекольной промышленности: стекольные составы и композиции, обработка стекла, оборудование для производства и разработки новых стекольных составов и композиций, приспособления и механизмы для обработки и производства стекла, специальные стекла и др.



Стекло. Стекольные составы и композиции. Обработка стекла




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "и" означает, что будут найдены только те страницы, где встречается каждое из ключевых слов. Например, при запросе "закалка стекла" будет найдено словосочетание "закалка стекла". При использовании режима "или" результатом поиска будут все страницы, где встречается хотя бы одно ключевое слово ("закалка" или "стекла").

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+закалка -стекла".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "состав" будут найдены слова "составы", "составом" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу "состав!".


Рейтинг@Mail.ru