СПОСОБ ПОЛУЧЕНИЯ СТЕКЛЯННЫХ МИКРОСФЕР С РЕГУЛИРУЕМЫМИ СВОЙСТВАМИ ИЗ СИНТЕТИЧЕСКИХ ШИХТ

СПОСОБ ПОЛУЧЕНИЯ СТЕКЛЯННЫХ МИКРОСФЕР С РЕГУЛИРУЕМЫМИ СВОЙСТВАМИ ИЗ СИНТЕТИЧЕСКИХ ШИХТ


RU (11) 2235693 (13) C2

(51) 7 C03B19/10, C03B8/02 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 17.10.2007 - действует 

--------------------------------------------------------------------------------

(14) Дата публикации: 2004.09.10 
(21) Регистрационный номер заявки: 2001127421/03 
(22) Дата подачи заявки: 2001.10.08 
(24) Дата начала отсчета срока действия патента: 2001.10.08 
(43) Дата публикации заявки: 2003.09.10 
(45) Опубликовано: 2004.09.10 
(56) Аналоги изобретения: TSUGAWA P.T. etc. Permeation of helium and hydrogen from glass-microsphere laser targets. J.Appl.Phys. - 1976, v. 47, № 5, p. 1987-1993.
RU 95117566 A, 20.09.1997.
RU 2036856 C1, 09.06.1995.
US 5611833 A, 18.03.1997.
DE 3822579 A, 19.01.1989. 
(72) Имя изобретателя: Медведев Е.Ф. (RU) 
(73) Имя патентообладателя: Российский федеральный ядерный центр - Всероссийский научно- исследовательский институт экспериментальной физики (RU) 
(98) Адрес для переписки: 607190, Нижегородская обл., г. Саров, пр. Мира, 37, РФЯЦ- ВНИИЭФ, начальнику ОПИНТИ А.А.Кимачеву 

(54) СПОСОБ ПОЛУЧЕНИЯ СТЕКЛЯННЫХ МИКРОСФЕР С РЕГУЛИРУЕМЫМИ СВОЙСТВАМИ ИЗ СИНТЕТИЧЕСКИХ ШИХТ

Использование: область стекольной промышленности, в частности технология производства стеклянных микроизделий для изготовления полых стеклянных микросфер для лазерно-физических экспериментов. Техническая задача - разработка способа получения микросфер с возможностью регулирования химической стойкости и коэффициента водородной проницаемости. Сущность изобретения: подбирают качественный состав функциональных компонентов и рассчитывают оптимальную концентрацию компонентов синтетической шихты: SiO2 54,56-60,53 мас.%, В2О3 3,24-7,01 мас.%, Na2O 12,31-20,10 мас.%, К2О 0,09-1,07 мас.%, СаО 5,59-6,56 мас.%, MgO 1,35-2,79 мас.%, Al2О3 0,02-1,13 мас.%, PbO 11,28-12,53 мас.%. При изменении силикатного модуля в диапазоне 2.8<n<3.4 для расчета количественного состава компонентов используют математическую модель, в которой последовательно введены зависимости коэффициента водородной проницаемости и химической стойкости от факторов структуры - силикатного модуля стеклообразующей композиции nSi и молекулярных объемов Vi функциональных компонентов синтетической шихты, основанные на анализе графических зависимостей коэффициента водородной проницаемости и химической стойкости от количественного состава шихты. Затем термообрабатывается фракция шихты 150-300 мкм. 1 з.п. ф-лы, 1 табл., 1 ил.



ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Предлагаемое изобретение относится к области стекольной промышленности, в частности к технологии производства стеклянных микроизделий, и может быть использовано для изготовления полых стеклянных микросфер для лазерно-физических экспериментов (ЛФЭ).
Известен способ получения полых стеклянных микросфер, включающий предварительное изготовление исходного синтетического сырья и его последующую распылительную сушку (заявка РФ №95117566, МПК С 08 J 3/12, опубл 20. 09. 97 г., БИ №25/97).
К недостаткам известного способа относится отсутствие возможности регулирования показателей качества микросфер, пригодных для ЛФЭ.
Известен наиболее близкий по технической сущности и заявляемому техническому результату способ получения стеклянных микросфер с регулируемыми свойствами из синтетических шихт (Tsugawa Р.Т., Моеm J., Roberts P.E., Souers P.G. Permeation of helium and hydrogen from glass-microsphere laser targets //J.Appl.Phys. - 1976. - V. 47, №5. - P. 1987-1993), включающий подбор качественного состава функциональных компонентов, расчет оптимальной концентрации компонентов синтетической шихты с последующей термообработкой шихты.
К недостаткам известного способа относится проблематичность получения микросфер с возможностью регулирования химической стойкости и коэффициента водородной проницаемости. Кроме того, в известном способе не указана оптимальная фракция шихты, подвергаемой термообработке, обеспечивающая получение микросфер заданных размеров, пригодных для ЛФЭ.
Задачей изобретения является разработка способа получения микросфер с возможностью регулирования химической стойкости и коэффициента водородной проницаемости.
Новый технический результат заключается в получении микросфер с регулируемыми свойствами, а конкретно в обеспечении возможности регулирования коэффициентов водородной проницаемости и химической стойкости готовых изделий в заданном диапазоне концентраций компонентов.
Дополнительный технический результат заключается в обеспечении дополнительного повышения химической стойкости и в снижении коэффициента водородной проницаемости.
Указанная задача и новый технический результат достигаются тем, что в известном способе, включающем подбор качественного состава функциональных компонентов и расчет оптимальной концентрации компонентов синтетической шихты, в соответствии с предлагаемым способом для расчета количественного состава компонентов используют математическую модель, в которой последовательно введены зависимости коэффициента водородной проницаемости и химической стойкости от факторов структуры - силикатного модуля стеклообразующей композиции и молекулярных объемов функциональных компонентов синтетической шихты, основанные на анализе графических зависимостей коэффициента водородной проницаемости и химической стойкости от количественного состава компонентов, а термообработке подвергают фракцию шихты 150-300 мкм.
Кроме того, предварительно готовят водорастворимую композицию при следующем содержании компонентов, мас.%:
SiO2 54,56-60,53
В2O3 3,24-7,01
Na2O 12,31-20,10
К2O 0,09-1,07
МgО 1,35-2,79
CaO 5,59-6,56
РbО 11,28-12,53
Аl2O3 0,02-1,13
Предлагаемый способ поясняется следующим образом.
Предварительно готовят водорастворимую композицию, например, при следующем содержании компонентов, мас.%:
SiO2 54,56-60,53
В2O3 3,24-7,01
Na2O 12,31-20,10
К2O 0,09-1,07
МgО 1,35-2,79
CaO 5,59-6,56
РbО 11,28-12,53
Аl2O3 0,02-1,13
Для обеспечения заданных показателей в предлагаемом способе получения микросфер используют стеклообразователи - оксиды кремния SiO2 и бора В2O3, модификаторы - оксиды натрия Na2O и калия К2O и дополнительно оксиды кальция CaO, магния МgО, алюминия Аl2О3 и свинца PbO, молекулярные объемы которых и коэффициент водородной проницаемости готовых изделий (микросфер) рассчитывают в соответствии со следующей математической моделью (системой линейных уравнений):
=-25.67464+1.12548·х
lgVSi=1.52843-0.05798·х
lgVNa=1.39377-1.01806
lgVK=-3.28975+4.18119·х
lgVCa=0.23179+0.04183·х при x=lgnSi
|gVMg=-0.76681+1.07759·х
lgVAl=-5.485+7.42105·х
lgVB=1.03925-1.50984·х
lgVPb=0.17588-0.01783·х
где V - молекулярный объем оксида-ингредиента, который идентифицирован нижним индексом-символом соответствующего элемента; -коэффициент водородной проницаемости; nSi - силикатный модуль, равный отношению концентраций оксидов SiO2 и Na2O. Границы применимости системы уравнений: для классического твердофазного способа получения микросфер 2.8<n<5, для способа получения микросфер из шихт, синтезированных в водной среде, 2.8<n<3.4.Основу стеклообразующей композиции для изготовления микросфер для ЛФЭ составляют оксиды SiO2, В2O3, Na2O, K2O. Для повышения устойчивости стекла по отношению к корродирующим компонентам атмосферы в композицию дополнительно введены оксиды СаО, МgО, Аl2О3, что приводит к повышению химической стойкости. В качестве рентгенопоглощающего компонента применен оксид РbО. В качестве компонентов стеклообразующей композиции для изготовления диагностических микросфер для ЛФЭ выбраны оксиды: SiO2, В2О3, Na2O, К2O, СаО, МgО, Аl2О3 и РbО.
SiO2 повышает химическую стойкость стекла; в силикатных стеклах является основным структурообразователем; в то же время SiOa способствует повышению водородной проницаемости стекла, что отрицательно влияет на эксплуатационные характеристики стеклянных микросфер.
В2O3 в зависимости от содержания щелочных и щелочноземельных оксидов может находиться в тройной [ВO4] и тетраэдрической [ВО3] координации по кислороду, поэтому в стекле может встраиваться в кремниевокислородную сетку или образует собственную структуру; [ВO4] повышает химическую стойкость стекла и его водородопроницаемость, [ВО3] понижает указанные свойства.
Аl2O3 в щелочно-силикатных стеклах является промежуточным между стеклообразователями и модификаторами; алюминий может находиться в тетра-, гекса- и октаэдрической координации за счет кислорода, вносимого в стеклообразующую систему щелочными оксидами. Аl2О3 усиливает диффузию катионов Na+ из глубинных слоев стекла к поверхности, чем увеличивает пористость структуры, водородопроницаемость и коррозию стекла. Щелочноземельные катионы ослабляют данный эффект, т.е. повышают химическую стойкость Аl2О3-содержащих стекол.
СаО и МgО повышают химическую стойкость стекол, заменяя собой часть щелочных оксидов, но при содержании МgО сверх 5 мас.% усиливается склонность силикатных стекол к кристаллизации, в результате чего увеличивается их водородопроницаемость.
РbО ухудшает химическую стойкость силикатных стекол, но снижает их склонность к кристаллизации. Однако в свинцовоборосиликатной системе получают некоторые виды ситаллов, обладающие высокой химической стойкостью и низкой газопроницаемостью. Кроме того, щелочносвинцовоборосиликатный расплав может являться средой, в которой легко кристаллизуются другие оксиды.
Получение раствора обусловлено необходимостью синтеза целевых стеклообразующих фаз и максимальной гомогенизации состава при тщательном перемешивании реакционной смеси.
Теоретические исследования показывают, что поливалентные элементы характеризуются способностью изменять свое координационное число по кислороду, а также структурные особенности силикатов.
Проведен анализ некоторых характеристик стеклообразующих композиций: силикатного модуля nSi; фактора связности структуры Y; парциальных объемов оксидов ; молекулярных объемов Vi, занимаемых каждым из компонентов i в структуре стекла; коэффициента водородной проницаемости .
Дополнительно рассматривалась внутренняя пористость Vint, %, для которой получено следующее выражение:

при этом

где n - количество всех компонентов композиции i; n-1 - количество компонентов за вычетом оксида кремния.
Параметр Vint применялся для оценочного расчета количества молей газа , проходящего через оболочку микросферы массой mglass, плотность стекла glass:

где коэффициент 0.45-102 получен при делении числа Лошмидта на число Авогадро, D - коэффициент диффузии газа через стекло. За время истечет , молей газа:

При Vint=0, т.е. нет диффузии газа через стекло; при нулевой пористости микросферы нельзя наполнить газом. В реальных условиях это не происходит, и в ЛФЭ микросферы используются в качестве газовых микроконтейнеров.
При V1=0 и Vint=100%, т.е. пористость и диффузия газа через стекло максимальны. Такое может быть, если стекло состоит только из стеклообразователей. Его химическая стойкость и водородопроницаемость будут наибольшими, но синтез в водной среде неосуществим.
Из анализа выражений для и следует, что т.е. газовая проницаемость, в т.ч. водородопроницаемость, зависит от соотношения молекулярных объемов компонентов Vi, формирующих структуру стекла, и объемная доля компонентов стеклообразующей композиции (без SiO2) Vi не должна превышать объемную долю основного стеклообразователя - оксида кремния.
В соответствии с математической моделью (системой линейных уравнений) последовательно задавая значения nSi из области оптимальных составов, рассчитали молекулярные объемы оксидов стеклообразующей композиции SiO2, B2O3, Na2O, К2O, СаО, МgО, Аl2О3 и РbО. Сумма Vi не превышала . Затем определили мольные доли mi,мол.д каждого из компонентов по формуле:

где i=1,2,...,n.
Далее рассчитали концентрации компонентов в мол. % Мi,мол %, после концентрацию из мол.% пересчитали в мас.% Mi, мас.%:

где M.мi - молекулярная масса i-того оксида.
Анализ экспериментальных данных показывает, что с ростом силикатного модуля nSi увеличивается содержание основного стеклообразователя SiO2, уменьшается содержание основного модификатора Na2O, увеличивается общее содержание щелочноземельных оксидов СаО и МgО за счет снижения общего количества щелочных оксидов, возрастает количество Аl2О3 и РbО, снижается содержание В2O3, увеличивается Vint, фактор связности Y практически не меняется, что свидетельствует об образовании двумерной слоистой структуры. Химическая стойкость возрастает, но водородная проницаемость также увеличивается, это подтверждается ростом коэффициента С уменьшением nSi в указанных пределах химическая стойкость и уменьшаются за счет уменьшения общего содержания стеклообразователей и увеличения содержания щелочных оксидов, уменьшения количества щелочноземельных оксидов, Аl2О3 и РbО, роста Vint при неизменном Y. Щелочные оксиды уменьшают Vint и наиболее эффективно снижают водородопроницаемость стекла, но при этом снижают химическую стойкость. Стеклообразователи наиболее эффективно повышают химическую стойкость, но усиливают .
Сравнивая композиции, содержащие SiO2, В2O3, Na2O, К2О, CaO, MgO, Al2O3 и РbО, по коэффициенту , необходимо предпочесть составы с низким nSi. Из сравнения по фактору "химическая стойкость" следует необходимость выбора составов с высоким nSi, т.е. необходима оптимизация составов по и nSi.
Таким образом, предлагаемый способ позволяет получать стеклообразующие композиции для изготовления диагностических микросфер для ЛФЭ с регулируемыми свойствами - коэффициентом водородной проницаемости и химической стойкости в зависимости от силикатного модуля nSi.
Промышленная применимость предлагаемого способа может быть подтверждена примерами 1-3 из таблицы.
Пример 1. В лабораторных условиях в водной среде получен состав, содержащий SiO2, В2O3, Na2O, K2O, CaO, MgO, Аl2О3 и РbО, с силикатным модулем nSi=3.4.
Пример 2. В лабораторных условиях в водной среде получена стеклообразующая композиция, содержащая указанные оксиды, с силикатным модулем nSi=3.
Пример 3. В лабораторных условиях в водной среде получена стеклообразующая композиция, содержащая указанные оксиды, с силикатным модулем nSi=2.8.
Синтез в водный среде при nSi=3.4 невозможен (область классической технологии), а при nSi<2.8 не имеет смысла из-за низкой химической стойкости стекла.
Расчет молекулярных объемов оксидов, занимаемых ими в структуре стекла, внутренней пористости, коэффициента водородной проницаемости, фактора связности структуры и концентраций оксидов в мас.% в заявляемом диапазоне в зависимости от величины силикатного модуля из области его допустимых значений приведен в таблице. В графической форме изменение свойств композиций - внутренней пористости, коэффициента водородной проницаемости, фактора связности структуры в зависимости от величины силикатного модуля из области его допустимых значений приведены на чертеже.
Таким образом, использование всех этапов предлагаемого способа и композиций в заявляемом диапазоне концентраций компонентов обеспечивает возможность регулирования коэффициентов водородной проницаемости и химической стойкости готовых изделий. 


ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения стеклянных микросфер с регулируемыми свойствами из синтетических шихт, включающий подбор качественного состава функциональных компонентов, расчет оптимальной концентрации компонентов синтетической шихты с последующей термообработкой шихты, отличающийся тем, что для расчета количественного состава компонентов используют математическую модель, в которую последовательно введены зависимости коэффициента водородной проницаемости и химической стойкости от факторов структуры - силикатного модуля стеклообразующей композиции и молекулярных объемов функциональных компонентов синтетической шихты, основанные на анализе графической зависимости коэффициента водородной проницаемости и химической стойкости от количественного состава компонентов, а термообработке подвергают фракцию шихты 150-300 мкм.
2. Способ по п.1, отличающийся тем, что предварительно готовят водорастворимую композицию при следующем содержании компонентов, мас.%:
SiO2 54,56 - 60,53
В2O3 3,24 - 7,01
Na2O 12,31 - 20,10
К2О 0,09 - 1,07
МgО 1,35 - 2,79
СаО 5,59 - 6,56
РbО 11,28 - 12,53
А12O3 0,02 - 1,13 


РИСУНКИ

Рисунок 1, Рисунок 2



ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян

Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к стекольной промышленности: стекольные составы и композиции, обработка стекла, оборудование для производства и разработки новых стекольных составов и композиций, приспособления и механизмы для обработки и производства стекла, специальные стекла и др.



Стекло. Стекольные составы и композиции. Обработка стекла




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "и" означает, что будут найдены только те страницы, где встречается каждое из ключевых слов. Например, при запросе "закалка стекла" будет найдено словосочетание "закалка стекла". При использовании режима "или" результатом поиска будут все страницы, где встречается хотя бы одно ключевое слово ("закалка" или "стекла").

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+закалка -стекла".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "состав" будут найдены слова "составы", "составом" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу "состав!".


Рейтинг@Mail.ru