ЧАСТОТНО-РЕГУЛИРУЕМЫЙ АСИНХРОННЫЙ ЭЛЕКТРОПРИВОД С ЭКСТРЕМАЛЬНЫМ УПРАВЛЕНИЕМ

ЧАСТОТНО-РЕГУЛИРУЕМЫЙ АСИНХРОННЫЙ ЭЛЕКТРОПРИВОД С ЭКСТРЕМАЛЬНЫМ УПРАВЛЕНИЕМ


RU (11) 2069034 (13) C1

(51) 6 H02P7/42, H02P5/34 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 07.12.2007 - действует 

--------------------------------------------------------------------------------

(21) Заявка: 5037925/07 
(22) Дата подачи заявки: 1992.04.16 
(45) Опубликовано: 1996.11.10 
(56) Список документов, цитированных в отчете о поиске: 1. Патент США N 4450395, кл. Н 02 Р 5/28, 1985. 2. Сандлер А.С., Сарбатов Р.С. Частотное управление асинхронными двигателями. - М.-Л.: Энергия, 1966, с. 104. 3. Авторское свидетельство СССР N 1339861, кл. Н 02 Р 7/36, 1987. 
(71) Заявитель(и): Ташкентский государственный технический университет им.А.Р.Бируни (UZ) 
(72) Автор(ы): Хашимов Арипджан Адылович[UZ]; Имамназаров Абдукаххар Турабович[UZ]; Сабиров Шухрат Мирвахитович[UZ] 
(73) Патентообладатель(и): Хашимов Арипджан Адылович (UZ) 

(54) ЧАСТОТНО-РЕГУЛИРУЕМЫЙ АСИНХРОННЫЙ ЭЛЕКТРОПРИВОД С ЭКСТРЕМАЛЬНЫМ УПРАВЛЕНИЕМ 

Использование: для управления частотно-регулируемым асинхронным электроприводом с короткозамкнутым двигателем. Сущность. Частотно-регулируемый асинхронный электропривод содержит асинхронный двигатель 1, преобразователь частоты блоки регулирования 3, 4 частотой и напряжением преобразователя частоты, сумматор 5, источник задания 4. В электропривод введены блоки умножения 9, 10, 11, 14, 15 блоки деления 12, 130 блоки дифференцирования напряжения и мощности, датчик 8 скорости функциональный преобразователь реализующий 16 зависимость /(1-), где = P2/P1 P2 - мощность на валу асинхронного делителя, P1 - полная мощность, потребляемая асинхронным двигателе. Введение указанных блоков позволит минимизировать суммарную мощность в зависимости от управляющей частоты и нагрузки на валу двигателя, что повышает КПД и упрощает электропривод за исключения датчика потока двигателя, датчика момента и решающих устройств, реализующих изменение потока, в зависимости от нагрузки и частоты. 1 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к электротехнике и может быть использовано для управления частотно-регулируемым асинхронным электроприводом с короткозамкнутым двигателем.

Известен асинхронный электропривод с экспериментальным управлением (1) с использованием микро ЭВМ, в которой сохраняется константы двигателя. Система привода содержит контур управления током статора и контур управления частотой статора.

При управлении измеряются скольжение, момент и магнитный поток в воздушном зазоре двигателя. На базе измеренных величин и хранящихся в памяти ЭВМ констант определяют потери в меди и ротора и потери в стали.

Рассчитывается КПД и в функции потока в воздушном зазоре и определяется направление изменения потока для увеличения КПД. Осуществляют необходимое изменение потока и соответствующие изменения частоты для поддержания постоянства момента.

Контуры управления током и частотой выдаются надлежащие команды и все операции повторяются.

Недостатком данного электропривода является использование вычислительного устройства (микро ЭВМ), которое приводит к необходимости составления и реализации алгоритма управления, а также значительно усложняет систему и повышает стоимость электропривода.

Известен частотно-регулируемый асинхронный электропривод с экстремальным управлением по минимуму потерь (2), содержащий асинхронный двигатель, к статорным обмоткам которого подключен статический преобразователь частоты с каналом регулирования частоты и каналом регулирования напряжения, на входы которых подаются управляющий сигнал задания и решающее (вычислительное) устройство, на входы которого поступают сигналы от датчиков частоты и момента двигателя, а с выхода выдается сигнал, пропорциональный оптимальной величине потока и сравнивающийся с сигналом пропорциональным оптимальной величине потока и поступающим от датчика потока двигателя, а их разность подается на вход канала регулирования напряжения и отрабатывается системой.

Данный электропривод имеет недостатки, аналогичные недостаткам выше рассмотренного (1).

Наиболее близким к изобретению является асинхронный электропривод с экстремальным управлением (3), содержащий асинхронный электродвигатель, к статорным обмоткам которого подключены выходы статического преобразователя частоты, блоки регулирования частоты и напряжения, выходами подключенные к соответствующим управляющим входам статического преобразователя частоты, сумматор, выход которого соединен с входом блока регулирования напряжения, а вход блока регулирования частоты соединен с выходом источника задания. Электропривод содержит два функциональных преобразователя, вход одного из которых соединен с выходом датчика момента, а выход, на котором получается сигнал ,, подключен к одному входу второго сумматора, на второй вход которого поступает сигнал a с датчика частоты, на вход сумматора соединен с входом второго функционального преобразователя, на выходе которого образуется сигнал, пропорциональный величине потока vоп и который подается на один из входов первого сумматора, второй вход которого соединен с выходом датчика потока (3).

Недостатками данного устройства является сложность схемы, обусловленное наличием датчиков момента и магнитного потока, которое приводит к сложной конструктивной связи с двигателем и узлами регулирования.

Кроме того, в прототипе не учитываются механические потери, а минимизирующая лишь электромагнитные потери состоящие из потерь в меди обмотки статора и ротора, а также потери в стали статора.

Механические потери, обусловленные наличием вентиляции и трением механических частей электродвигателя, начинают сильно влиять на суммарные потери электродвигателя в зоне регулирования частоты выше номинального. Это видно по формуле,

Pмехf= PмехнF3/2

где Pмехf механические потери двигателя, состоящие из потерь в подшипниках и вентиляционных потерь

Pмехн значение механических потерь при номинальной частоте

F=f/fн относительная частота.

В результате все вышесказанные недостатки в общем снижают КПД электродвигателя и электропривода.

Целью изобретения является повышение К.П.Д. и упрощение электропривода.

Указанная цель достигается тем, что в частотно-регулируемый асинхронный электропривод, содержащий асинхронный двигатель, к статорным обмоткам которого подключены входы статического преобразователя частоты, блоки регулирования частоты и напряжения, входами подключенные к соответствующим управляющим входам статического преобразователя частоты, сумматор, выход которого соединен с входом блока регулирования напряжения, вход блока регулирования частоты соединен с выходом источника задания, введены три блока умножения, два блока деления, два блока дифференцирования соответственно сигнала напряжения и мощности, датчик мощности и датчик напряжения, включенные в цепи статорных обмоток, датчик скорости, механически связанный с асинхронным двигателем, выход датчика напряжения подключен к входам блока дифференцирования сигнала напряжения и первого блока умножения, выходы датчика мощности и второго блока умножения подключены к входам первого блока деления, выходы датчика скорости и первого блока умножения подключены к входам второго блока умножения, выход первого блока деления подключен к входу функционального преобразователя, к входам третьего блока умножения подключены выходы второго блока умножения и функционального преобразователя, выход третьего блока умножения подключен к входу блока дифференцирования сигнала мощности, с входом второго блока деления подключены выходы блоков дифференцирования сигналов напряжения и мощности, выход второго блока деления подключен к одному из входов сумматора, а функциональный преобразователь выполнен с возможностью реализации функции



P2 мощность на валу асинхронного двигателя;

P1 полная мощность, потребляемая асинхронным двигателем.

На фигуре представлена блок-схема частотно-регулируемого асинхронного электропривода с экстремальным управлением.

Частотно-регулируемый асинхронный электропривод с экстремальным управлением содержит асинхронный двигатель 1, к статорным обмоткам которого подключены выходы статического преобразователя 2 частоты, блоки 3, 4 регулирования соответственно напряжения и частоты, выходами подключенные к соответствующим управляющим входам статического преобразователя 2 частоты, сумматор 5, выход которого соединен с входом блока 3 регулирования напряжения, вход блока 4 регулирования частоты подключен к выходу источника задания. В электропривод введены датчики 6, 7 соответственно мощности и напряжения, включенные в цепи статорных обмоток, асинхронного двигателя, датчик 8 скорости, механически связанный с асинхронным двигателем. В электропривод также введены три блока 9, 10, 11 умножения, два блока 12, 13 деления, два блока 14, 15 дифференцирования соответственно сигналов напряжения и мощности и функциональный преобразователь 16, реализующий функцию ,

где , P2 мощность на валу асинхронного двигателя, P1 полная мощность, потребляемая асинхронным двигателем.

Выход датчика напряжения подключен к входам блока 14 дифференцирования сигнала напряжения и первого блока 9 умножения. Выходы датчика 6 мощности и второго блока 10 умножения подключены к входам первого блока 12 деления. Выходы датчика 8 скорости и первого блока 9 умножения подключены к входам второго блока 10 умножения. Выход первого блока 12 деления подключен к входу функционального преобразователя 16. К входам третьего блока 11 умножения подключены выходы второго блока 10 умножения и функционального преобразователя 16, а выход третьего блока 11 умножения соединен с входом блока 15 дифференцирования сигнала мощности, выход которого и выход блока дифференцирования 14 сигнала напряжения соединены с входами второго блока 13 деления, выходом соединенного с одним из входов сумматора 5, другим входом соединенное с источником задания.

Электропривод работает следующим образом.

В установившемся режиме работы частотно-регулируемого асинхронного электропривода потери являются функцией трех независимых переменных: момента нагрузки, магнитного потока двигателя и частоты.

Поэтому в общем случае минимум потерь определяется системой трех равенств.

(1)

где потери мощности в асинхронном двигателе.

= f/fн относительное значение момента на валу асинхронного двигателя.

= /н относительное значение частоты.

P относительное значение магнитного потока.

Выполнение второго и третьего условий означает, что потери будут наименьшими при отсутствии нагрузки и нулевой частоте, т. е. при неработающей машине. Поэтому единственным условием минимума потерь работающей машины является выполнение первого условия



Магнитный поток с напряжением связан следующей зависимостью:

(2)

f1н частота напряжений n-ной обмотки

= 2/1н абсолютное скольжение

Uн номинальное напряжение статора

С 4,44 1K конструктивная постоянная фазной обмотки статора

= U/Uн относительное напряжение

B() и A(,) математические обозначения, выраженные через параметры схемы замещения фазы асинхронного электродвигателя при частотном управлении.

(3)

на основании (3) запишем первое условие из (1)

(4)

Для реализации минимума потерь в частотном электроприводе разыскивается экстремальная поисковая система с изложением производной которая позволяет поддерживание минимума потерь при изменении момента и частоты.

В рабочем режиме электродвигателя сигналы с датчиков мощности 6, напряжения 7 и скорости 8 поступают на блоки 9, 10, 14, 12 арифметических операций управления.

В блоке 9 умножения (квадратор) сигнал датчика 7 напряжения увеличивается квадратично. Далее умноженный сигнал напряжения поступает на блок 10 умножения с постоянным коэффициентом "к", где происходит умножение квадратичного сигнала U2 напряжения на коэффициент "к" и выходной сигнал датчика скорости 8. Соответственно на выходе блока 10 умножения выделяется сигнал, пропорциональный величине мощности на валу асинхронного двигателя . Этот сигнал поступает на блоки 12 и 11. В блоке 12 деления производится деление двух сигналов, пропорциональных

. Функциональный преобразователь 16 осуществляет арифметическую операцию .

Далее в блоке 11 умножения производятся умножения сигналов, пропорциональных , при этом на выходе блока 11 образуются суммарные потери DP двигателя.

В блоках дифференцирования 14 и 15 дифференцируются сигналы U и P, которые поступают на блок 13 деления.

На выходе этого блока получаем сигнал равный . Величина сигнала может иметь разнополярное значение в зависимости от величины нагрузки. При изменении нагрузки на валу двигателя от нуля до номинальной знак сигнала положительный, а при увеличении нагрузки выше номинального

отрицательный. При суммировании сигналов задания и обратной связи в сумматоре 5, получаем на его выходе сигнал управления, который изменяет выходное напряжение преобразователя 2 частоты до экстремального значения. Причем экстремальная величина напряжения всегда будет обеспечивать минимум потребления активной мощности асинхронного двигателя.

Таким образом, вследствие минимизации суммарной мощности в зависимости от управляющей частоты и нагрузки на валу двигателя повышается КПД двигателя и снижается установленная мощность питаемого преобразователя частоты.

В системе экстремального управления заметно улучшается конструктивное исполнение двигателя в связи с отсутствием датчика потока двигателя, датчика момента и решающих устройств, реализующих изменение потока в зависимости от нагрузки и частоты. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



Частотно-регулируемый асинхронный электропривод с экстремальным управлением, содержащий асинхронный двигатель, к статорным обмоткам которого подключены выходы статического преобразователя частоты, блоки регулирования частоты и напряжения, выходами подключенные к соответствующим управляющим входам статического преобразователя частоты, сумматор, выход которого соединен с входом блока регулирования напряжения, вход блока регулирования частоты соединен с выходом источника задания, отличающийся тем что с целью повышения КПД и упрощения, введены три блока умножения, два блока деления, два блока дифференцирования соответственно сигнала напряжения и мощности, датчик мощности и датчик напряжения, включенные в цепи статорных обмоток, датчик скорости, механически связанный с асинхронным двигателем, выход датчика напряжения подключен к входам блока дифференцирования сигнала напряжения и первого блока умножения, выходы датчика мощности и второго блока умножения подключены к входам первого блока деления, выходы датчика скорости и первого блока умножения подключены к входам второго блока умножения, выход первого блока деления подключен к входу функционального преобразователя, к входам третьего блока умножения подключены выходы второго блока умножения и функционального преобразователя, выход третьего блока умножения подключен к входу блок дифференцирования сигнала мощности, к входам второго блока деления подключены выходы блоков дифференцирования сигналов напряжения и мощности, выход второго блока деления подключен к одному из входов сумматора, другим входом соединенного с источником задания, а функциональный преобразователь выполнен с возможностью реализации функции



где h = P2/P1;

P2 мощность на валу асинхронного двигателя;

Р1 полная мощность, потребляемая асинхронным двигателем.