УСТРОЙСТВО СДВИГА ФАЗЫ НА 90 ГРАДУСОВ

УСТРОЙСТВО СДВИГА ФАЗЫ НА 90 ГРАДУСОВ


RU (11) 2141673 (13) C1

(51) 6 G01R25/04 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 25.10.2007 - прекратил действие 

--------------------------------------------------------------------------------

(14) Дата публикации: 1999.11.20 
(21) Регистрационный номер заявки: 97119410/09 
(22) Дата подачи заявки: 1997.11.21 
(45) Опубликовано: 1999.11.20 
(56) Аналоги изобретения: SU 1800386 A1, 07.03.93. SU 1511705 A1, 30.09.89. US 4581595 A, 08.04.86. DE 2856012 A2, 26.06.80. DE 3512405 A2, 31.10.85. 
(71) Имя заявителя: АОЗТ Научно-производственная фирма "Прорыв" 
(72) Имя изобретателя: Рожнов Е.И. 
(73) Имя патентообладателя: АОЗТ Научно-производственная фирма "Прорыв" 
(98) Адрес для переписки: 140160, Жуковский-4 Московской обл., а/я 304 АОЗТ НПФ "Прорыв" 

(54) УСТРОЙСТВО СДВИГА ФАЗЫ НА 90 ГРАДУСОВ 

Изобретение относится к электроизмерительной технике и может быть использовано в прецизионных метрологических приборах, а также в счетчиках реактивной электрической энергии в электросетях. Достигаемый технический результат - расширение функциональных возможностей устройства и повышение точности поддержания равенства амплитуд входного и выходного напряжений при воздействии дестабилизирующих факторов и разбросе параметров применяемых элементов. Устройство содержит включенные последовательно регулируемые фазовращатель (РФ) и усилитель (РУ), усилитель-ограничитель (УО), логическую схему ИСКЛЮЧАЮЩЕЕ ИЛИ, дифференциальный интегратор (ДИ), подключенный к управляющему входу РФ, вход которого, являясь входом устройства, связан с входами второго УО, связанного с вторым входом указанной логической схемы, и входом первого выпрямителя, выход которого связан с входом второй логической схемы ИСКЛЮЧАЮЩЕЕ ИЛИ и входом второго ДИ, второй вход которого через второй выпрямитель связан с выходом РУ, второй вход которого связан с выходом второго ДИ, а второй вход второй логической схемы ИСКЛЮЧАЮЩЕЕ ИЛИ связан с выходом первой, а выход - с вторым входом первого ДИ. 2 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к электроизмерительной технике и может быть использовано в прецизионных метрологических приборах, а также в счетчиках реактивной электрической энергии в одно- и трехфазных электросетях.

Известно устройство для сдвига фазы на 90 градусов (см. AC SU N 1511705 МКИ G 01 R 25/04, 1988 г.), содержащее фазосдвигающий элемент, фазовый детектор и интегратор, вход которого соединен с выходом фазового детектора, один из входов которого подключен к входу фазосдвигающего элемента, являющегося входом устройства, а также управляемый по модулю и знаку коэффициента передачи делитель напряжения и сумматор, выход которого является выходом устройства и связан с вторым входом фазового детектора, а вход сумматора - соответственно с выходом фазосдвигающего элемента и делителя напряжения, вход которого соединен с входом фазосдвигающего элемента, а управляющий вход - с выходом интегратора.

Известное техническое решение не обеспечивает равенства амплитуд входного и выходного напряжений.

Наиболее близким по технической сущности и достигаемому результату является устройство сдвига фазы на 90 градусов (см. АС SU N 1800386 МКИ G 01 R 25/04, 1991 г.), содержащее последовательно соединенные фазовращатель, первый сумматор и регулируемый усилитель, а также регулятор по фазе, состоящий из последовательно соединенных первого фазового детектора, первого интегратора и управляемого делителя напряжения, выход которого подключен к второму входу первого сумматора, причем вход системы связан с входом фазовращателя и с вторыми входами управляемого делителя напряжения и первого фазового детектора, второй вход которого соединен с выходом первого сумматора, а также регулятор по амплитуде, состоящий из последовательно соединенных второго фазового детектора и второго интегратора, выход которого подключен к управляющему входу регулируемого усилителя, выход которого является выходом системы, кроме того, вход и выход системы подключены соответственно к первому и второму входам второго и третьего сумматоров, выходы которых связаны соответственно с первыми и вторыми входами второго фазового детектора.

Недостатком известного технического решения является то, что высокая точность поддержания равенства амплитуд входного и выходного напряжений в таком устройстве может быть получена только при условии абсолютной идентичности амплитудных и фазовый характеристик сумматоров входных и выходных напряжений устройства в цепи регулировки амплитуды.

Технический результат изобретения заключается в расширении функциональных возможностей устройства путем жесткой стабилизации сдвига фаз и повышения точности поддержания равенства амплитуд входного и выходного напряжений устройства при воздействии дестабилизирующих факторов и при разбросе параметров применяемых элементов.

Широкие функциональные возможности обеспечиваются тем, что в устройство сдвига на 90 градусов, содержащее фазовращатель, вход которого является входом устройства, два интегратора и регулируемый усилитель, выход которого является выходом устройства, введены следующие дополнительные связи и элементы, а именно фазовращатель выполнен регулируемым, а интеграторы - дифференциальными, вход и выход устройства через первый и второй усилители-ограничители соединены раздельно с входами первой логической схемы ИСКЛЮЧАЮЩЕЕ ИЛИ, выход которой соединен с одним из входов второй логической схемы ИСКЛЮЧАЮЩЕЕ ИЛИ и одним из входов первого дифференциального интегратора, второй вход которого соединен с выходом второй логической схемы ИСКЛЮЧАЮЩЕЕ ИЛИ, а выход соединен с управляющим входом регулируемого фазовращателя, причем второй вход второй логической схемы ИСКЛЮЧАЮЩЕЕ ИЛИ соединен с выходом первого выпрямителя, вход которого соединен с входом устройства, а выход дополнительно соединен с одним из входов второго дифференциального интегратора, второй вход которого через второй выпрямитель соединен с выходом устройства, а выход второго дифференциального интегратора соединен с управляющим входом регулируемого усилителя, сигнальный вход которого соединен с выходом регулируемого фазовращателя.

Сущность изобретения заключается в использовании двух взаимонезависимых следящих цепей обратной связи по фазе и амплитуде с высоким коэффициентом усиления, что позволяет с высокой степенью точности поддерживать заданную величину сдвига фаз и равенства амплитуд входного и выходного напряжений устройства при воздействии дестабилизирующих факторов без особых требований к разбросу параметров входящих в устройство элементов.

Сравнение предлагаемого технического решения с другими техническими решениями (см. патенты US N 4492927 НКИ 330-9 Схема компенсации ухода напряжения, N 4581595 НКИ 333-139 Фазосдвигающая схема с минимальной пульсацией амплитуды, патент GB N 2121191 МКИ G 01 R 23/00 Фазочувствительный детектор, патенты DE N 2856012 НКИ H 03 H 7/18 Фазосдвигающая схема включения и способ ее применения, N 3512405 МКИ H 03 F 1/34 Схема для формирования управляемого подаваемым входным сигналом выходного сигнала, патенты IP N 38849/80 МКИ H 03 H 11/12 Усилитель с выравниванием частотной характеристики сигнала, N 45866/80 МКИ G 01 R 25/10 Устройство для измерения частоты, N 40681/82 МКИ H 03 H 1/50 Устройство для преобразования частотной модуляции в амплитудную модуляцию, N 49727/84 МКИ H 03 H 1/20 Регулирующий фазовращатель, N 8949/86 МКИ G 01 R 23/06 Преобразователь частоты в напряжение; авторские свидетельства SU N 135740 МКИ H 03 H 7/18 Фазовращатель-корректор для счетчика программного управления, N 181156 МКИ G 01 R 25/00 Устройство для измерения разности фаз, N 182764 МКИ H 03 H 7/20 Способ компенсации уходов фазы сигналов в узкополосном фильтре, N 224670 МКИ G 01 R 25/00 Образцовое фазозадающее устройство для широкой полосы частот, NN 243705, 243707 МКИ G 01 R 25/00 Потенциометрический фазовращатель, N 246666 МКИ G 01 R 25/00 Квадратурный фазовращатель инфранизкой частоты, N 247404 МКИ G 01 R 25/00 Квадратурное фазосдвигающее устройство следящего типа, NN 304860, 461684 МКИ G 01 R 25/04 Образцовое фазосдвигающее устройство на диапазон инфрачастот, N 359613 МКИ G 01 R 25/00 Широкодиапазонное квадратурное фазосдвигающее устройство, N 363185 МКИ H 03 H 7/18 Устройство для устранения фазовых сдвигов, N 392422 МКИ G 01 R 25/00 Фазовращатель для диапазона углов 0-90 градусов, N 415603 МКИ G 01 R 25/00 Устройство для индикации 90 градусного фазового сдвига между синусоидальными напряжениями, N 448399 МКИ G 01 R 25/00 Квадратурный фазорасщепитель, N 512561 МКИ H 03 H 7/18 Фазосдвигающее устройство, N 579689 МКИ H 03 H 7/18 Устройство для сдвига фаз на 90 градусов, N 603093 МКИ H 03 H 7/18 Способ сдвига фаз, N 980249 МКИ H 03 H 7/18 Управляющий низкочастотный фазовращатель, N 1054793 МКИ G 01 R 25/04 Способ задания фазовых сдвигов, N 1112311 МКИ G 01 R 25/04 Фазовращатель синусоидальных сигналов, N 1511705 МКИ G 01 R 25/04 Устройство сдвига фаз на 90 градусов, NN 1253307, 1304572 МКИ G 01 R 25/02 Цифровой фазовращатель, N 1236898 МКИ G 01 R 25/00 Способ измерения сдвига фаз двух гармонических сигналов и устройство, N 1334941 МКИ G 01 R 25/04 Управляемый фазовращатель, N 1511705 МКИ G 01 R 25/04 Устройство сдвига фаз на 90 градусов, N 1647448 МКИ G 01 R 25/04 Фазовращатель, N 1661670 МКИ G 01 R 25/04 Электронный фазовращатель, N 1800386 МКИ G 01 R 25/04 Устройство сдвига фаз на 90 градусов, N 2035743 МКИ G 01 R 25/00 Способ определения квадратурных фазовых сдвигов синусоидальных сигналов; Основы фазометрии, Ленинград, Энергия; Журнал "Приборы и техника эксперимента", 1978, N 5, стр. 171, В.С. Батраченко, Цифровые фазовращатели; Журнал "Радиотехника", 1980, т.35, N 4, стр. 25-29, В.И. Козлов, Цифровые фазовые детекторы; В.А. Левин, Синтезаторы частот системой импульсно-фазовой автоподстройки, Москва, Советское радио, 1989) показывает, что предложенное решение обладает новой совокупностью существенных признаков, которые совместно с известными признаками позволяют успешно реализовать цель изобретения.

На фиг.1 приведена функциональная схема предлагаемого технического решения, на фиг. 2 - эпюры напряжения в основных точках устройства.

Устройство сдвига фазы на 90 градусов содержит регулируемый фазовращатель 1, регулируемый усилитель 2, первый 3 и второй 4 усилители-ограничители, первую 5 и вторую 6 логическую схему ИСКЛЮЧАЮЩЕЕ ИЛИ, первый дифференциальный интегратор 7, первый 8 и второй 9 выпрямители и второй дифференциальный интегратор 10.

Устройство работает следующим образом.

На сигнальный вход регулируемого фазовращателя 1 поступает синусоидальное напряжение Uвх= Usint (см. фиг.2,а).

При отсутствии управляющего напряжения Uр на регулирующем входе фазовращателя напряжение на его выходе будет равно

Uвых= U(K K)exp[j( )],

где K, - модуль и аргумент коэффициента передачи устройства на рабочей частоте; K, - отклонение модуля и аргумента коэффициента передачи устройства от "идеальных" при воздействии дестабилизирующих факторов.

Отклонение реальных характеристик фазовращателя от расчетных напрямую связано с воздействием следующих дестабилизирующих факторов:

- отклонение частоты входного сигнала от номинальной;

- изменение температуры окружающей среды;

- изменение напряжения питания;

- старение элементов и временной дрейф их параметров;

- технологический разброс параметров элементов фазовращателя;

- другие факторы.

Влияние этих факторов снижается до любого приемлемого значения путем автоматической коррекции модуля и жесткой стабилизации аргумента передаточной функции устройства с помощью специальных взаимонезависимых регуляторов модуля и фазы выходного напряжения.

Рассмотрим принцип работы регуляторов фазы и модуля передаточной функции устройства раздельно.

Регулятор фазы передаточной функции устройства работает следующим образом.

В переходном режиме, например при включении или при воздействии возмущающих и дестабилизирующих факторов, фазовая расстройка велика, и регулятор фазы, состоящий из двух однополярных усилителей-ограничителей 3 и 4, двух логических схем ИСКЛЮЧАЮЩЕЕ ИЛИ 5 и 6, первого дифференциального интегратора 7 и первого выпрямителя 8, формирует пропорциональное расстройке регулирующее напряжение Uр, которое, бездействуя на управляющий вход регулируемого фазовращателя 1, обеспечивает сдвиг фаз между входным и выходным напряжением устройства, равным 90 градусов с большой точностью.

При достижении значения, близкого или равного нулю, регулятор фазы переходит в установившийся режим работы, поддерживая строгую ортогональность входного и выходного напряжений устройства.

Эпюры напряжений в основных точках регулятора фазы показаны на фиг.2.

Усилители-ограничители 3 и 4 регулятора производят усиление и ограничение положительной составляющей поступающих на их вход входного напряжения Uа (фиг.2,а) и выходного напряжения Uв (фиг.2,в) устройства.

Логическая схема ИСКЛЮЧАЮЩЕЕ ИЛИ 5 из выходных напряжений Uб (фиг.2,б) и Uг (фиг.2,г) усилителей-ограничителей 3 и 4 формирует напряжение Uд (фиг.2, д), несущее информацию о фазовой расстройке .

Логическая схема ИСКЛЮЧАЮЩЕЕ ИЛИ 6 из выходного напряжения Uд логической схемы ИСКЛЮЧАЮЩЕЕ ИЛИ 5 и выходного напряжения выпрямителя 8 формирует противофазное Uд напряжение Uе для второго входа дифференциального интегратора 7.

Логические схемы ИСКЛЮЧАЮЩЕЕ ИЛИ введены в устройство для реализации состояния логического "0" на их выходе при одинаковом состоянии обоих входов и для реализации логической "1" на их выходе при неодинаковом состоянии их входов.

Поэтому при наличии входного напряжения UА на входы первого дифференциального интегратора 7 поступают нормированные по амплитуде противофазные импульсные напряжения Uд и Uе, а при отсутствии входного напряжения Uа напряжение на обоих входах дифференциального интегратора становится равным нулю.

В установившемся режиме (фазовая расстройка = 0 ) парафазные импульсы напряжений Uд и Uе на входах первого дифференциального интегратора имеют одинаковую длительность, следовательно, интеграл разности их напряжений и регулирующее напряжение Uр равны нулю.

В переходном режиме (фазовая расстройка 0 ) противофазные импульсы напряжений на входах первого дифференциального интегратора имеют различную длительность, интеграл разности их воздействий становится больше нуля, т.е. появляется регулирующее напряжение Uр, величина которого пропорциональна фазовой расстройке.

Амплитуда и знак регулирующего напряжения Uр жестко связаны с отношением длительности импульсов, бездействующих на входы дифференциального интегратора 7, и вследствие нормирующего воздействия усилителей-ограничителей 3 и 4 практически не зависит от амплитуд сравниваемых по фазе напряжений, что значительно повышает точность регулирования и расширяет динамический диапазон работы устройства.

Регулятор модуля передаточной функции (амплитудный регулятор) устройства работает следующим образом.

В переходном режиме амплитудная расстройка U (разность по модулю между входным и выходным напряжениями устройства) велика, и амплитудный регулятор, состоящий из двух идентичных первого и второго выпрямителей напряжения 8 и 9 и второго дифференциального интегратора 10, формирует пропорциональное расстройке U регулирующее напряжение Uр, которое, воздействуя на управляющий вход регулируемого усилителя 2, приводит его коэффициент усиления к такому значению, при котором абсолютное значение амплитуды выходного напряжения становится равным абсолютному значению амплитуды входного напряжения с точностью, достаточной для решения большинства метрологических задач.

При достижении U значения, близкого или равного нулю, амплитудный регулятор переходит в установившийся режим работы, поддерживая равенство амплитуд ортогональных напряжений устройства.

Для минимизации ошибки регулирований в амплитудном регуляторе полностью устранено "паразитное" влияние фазовых характеристик сравниваемых по амплитуде напряжений на точность регулирования, в то время как по разности амплитуд U регулятор обеспечивает высокий коэффициент усиления.

С этой целью входное и выходное напряжения устройства предварительно выпрямляются двумя идентичными выпрямителями напряжения 8 и 9, выходные напряжения которых поступают на входы второго дифференциального интегратора 10, обеспечивающего усиление, интегрирование и формирование регулирующего напряжения Uр, амплитуда которого пропорциональна разности амплитуд U входного и выходного напряжений и совершенно не зависит от их фазовых характеристик.

В свою очередь, работа регулятора фазы не зависит от амплитудных характеристик входного и выходного напряжения. Такие качества обоих регуляторов исключают "паразитное" взаимовлияние при одновременной работе, что улучшает точностные характеристики устройства в целом.

В дополнение к этому, жесткая следящая отрицательная обратная связь в сочетании с большим коэффициентом усиления каждого регулятора позволяют обеспечить выходную стабильность работы устройства при воздействии дестабилизирующих факторов, делает его некритичным к разбросу параметров и старению элементов, а самое главное, обеспечивает высокую точность регулирования по фазе и амплитуде.

Устройство обеспечивает сдвиг фаз на 90 градусов с точностью 0,05% и обеспечивает равенство амплитуд входного и выходного напряжений с точностью 0,01% номинального значения. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



Устройство сдвига фазы на 90 градусов, содержащее фазовращатель, вход которого является входом устройства, два интегратора и регулируемый усилитель, выход которого является выходом устройства, отличающееся тем, что фазовращатель выполнен регулируемым, а интеграторы - дифференциальными, при этом вход и выход устройства через первый и второй усилители-ограничители соединены раздельно с входами первой логической схемы ИСКЛЮЧАЮЩЕЕ ИЛИ, выход которой соединен с одним из входов второй логической схемы ИСКЛЮЧАЮЩЕЕ ИЛИ и одним из входов первого дифференциального интегратора, второй вход которого соединен с выходом второй логической схемы ИСКЛЮЧАЮЩЕЕ ИЛИ, а выход - с управляющим входом регулируемого фазовращателя, причем второй вход второй логической схемы ИСКЛЮЧАЮЩЕЕ ИЛИ соединен с выходом первого выпрямителя, вход которого соединен с входом устройства, а выход дополнительно соединен с одним из входов второго дифференциального интегратора, второй вход которого через второй выпрямитель соединен с выходом устройства, а выход второго дифференциального интегратора соединен с управляющим входом регулируемого усилителя, сигнальный вход которого соединен с выходом регулируемого фазовращателя.