МНОГОКАСКАДНЫЙ ОПТОЭЛЕКТРОННЫЙ КОММУТАТОР

МНОГОКАСКАДНЫЙ ОПТОЭЛЕКТРОННЫЙ КОММУТАТОР


RU (11) 2088960 (13) C1

(51) 6 G02F1/095 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 25.10.2007 - прекратил действие 

--------------------------------------------------------------------------------

(14) Дата публикации: 1997.08.27 
(21) Регистрационный номер заявки: 93027539/09 
(22) Дата подачи заявки: 1993.05.20 
(45) Опубликовано: 1997.08.27 
(56) Аналоги изобретения: 1. Fukui M., Kitayama K. Jmplementation of optical image crossbar switch. Minsk, 1992, Technical digest, 30А3. 2. Noguchi K. at al. Journal of Lighwave Technology, v. 9, N 12, 1991, p. 1726 - 1732. 3. Jahns.J., Mardocca M.J. Crossover networks and their optical implementation, applied Optics, v. 27, 1988, N 15, p. 3155 - 3160. 
(71) Имя заявителя: Федоров Вячеслав Борисович 
(72) Имя изобретателя: Федоров Вячеслав Борисович 
(73) Имя патентообладателя: Федоров Вячеслав Борисович 

(54) МНОГОКАСКАДНЫЙ ОПТОЭЛЕКТРОННЫЙ КОММУТАТОР 

Изобретение относится к оптической обработке информации и может использоваться в высокопроизводительных коммутирующих устройствах многоабонентных телекоммуникационных систем связи для передачи и приема больших массивов информации, представленной в виде двумерных оптических изображений. Сущность изобретения заключается в том, что в каскады оптических межсоединений введены элементы, вращающие на 90o плоскость поляризации проходящего линейно-поляризованного света, и дополнительные поляризационно-чувствительные расщепители, четвертьволновые пластинки и плоские отражающие элементы, и использованы оптическая система передачи изображений и оптическая схема коммутатора. 2 з.п. ф-лы, 4 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к области оптической обработки информации и может быть использовано в высокопроизводительных коммутирующих устройствах высокопроизводительных многоабонентных телекоммуникационных систем связи и суперЭВМ для передачи и приема больших массивов групповой информации, представленной в виде двумерных оптических изобретений.

Известен оптоэлектронный коммутатор размера N x N (с N входными и N выходными портами) с топологией сети координатного переключателя, предназначенный для передачи по соединяемым каналам двумерных оптических изобретений [1] Этот коммутатор выполнен в виде последовательно расположенных, оптически связанных мультиплицирующей оптической системы, состоящей из двух объективов и двух квадратных растров линз с числом линз N, пространственно-временного модулятора света, выполненного в виде квадратной матрицы с N2 индивидуально управляемыми светоклапанными ячейками (управляемыми элементами), и оптической системы совмещения изображений, состоящей из квадратного растра линз с числом линз N2 и двух квадратных растров линз с числом линз N. Основными недостатками такого коммутатора двумерных изображений являются большие вносимые оптические потери, ограничивающие возможный темп передачи информации по соединяемым парам входных и выходных портов, и большое число управляемых элементов. Например, в коммутаторе размера 32 х 32 коэффициент светопропускания любого оптического канала, связывающего пару входных и выходных портов, не превышает величины N-1 0,03, и число индивидуально управляемых светоклапанных ячеек в пространственно-временном модуляторе равно 1024.

Известен оптоэлектронный коммутатор оптических каналов размера 32 х 32 с топологией соединительной сети Бенеса [2] Такой коммутатор содержит девять последовательно расположенных пространственно-временных модуляторов, выполненных в виде квадратных матриц из шеснадцати индивидуально управляемых переключателей плоскости поляризации света, которые оптически связаны с помощью размещенных между ними восьми каскадов оптических межсоединений с шестнадцатью оптическими входами и шестнадцатью оптическими выходами; два поляризационно-чувствительных расщепителя, установленных соответственно перед первым и за девятым пространственно-временными модуляторами света, через две боковые ортогональные грани которых осуществляется ввод или вывод поступающей в порты оптической информации, и блок управления. В каскадах оптических межсоединений коммутатора используются имеющие форму прямоугольных параллелепипедов квадратного сечения интерференционные поляризационно-чувствительные расщепители из изотропного материала (стекло), оптические характеристики которых (угловая апертура, оптические потери, аберрации) позволяют передавать через них изображения с большим числом элементов (пикселов) при малых вносимых в соединяемые пары входных и выходных портов оптических потерях.

Недостатком такого оптоэлектронного коммутатора является зависимость длины оптических путей между входными и выходными портами от реализуемой картины соединений, что не позволяет передавать по соединяемым парам каналов информацию в виде двумерных изображений с большим (в пределе, ограниченном дифракционными явлениями) числом элементов, и тем самым ограничивает общую пиковую производительность коммутатора.

Известен многокаскадный оптоэлектронный коммутатор размера 2N x 2N с топологией соединительной сети с пересечениями [3] Такой коммутатор состоит из каскадов пространственно-временных модуляторов с N управляемыми переключателями плоскости поляризации света, которые оптически связаны с расположенными между ними каскадами оптических межсоединений с N входными и N выходными каналами, выполненными по схеме модернизированного интерферометра Майкельсона. Каждый из каскадов оптических межсоединений содержит поляризационно-чувствительный расщепитель, перед входной и за выходной гранями которого установлены общие для всех N выходных каналов объективы, а за каждой противоположной гранью расщепителя размещены четвертьволновая пластинка, объектив и отражающий элемент, причем один из установленных за этими гранями отражающих элементов (либо оба элемента) выполнен в виде отражающей призменной решетки с индивидуальным для каждого каскада оптических межсоединений шагом.

Такой многокаскадный оптоэлектронный коммутатор обеспечивает равенство длин оптических путей между его входными и выходными портами при любой картине соединений как для p-, так и для s-поляризованных сигналов. Однако в известном коммутаторе виньетирование световых пучков компонентами оптической системы приводит к существенному ограничению числа элементов в передаваемых по оптическим каналах изображениях, не позволяя реализовать предельные пропускную способность оптических каналов и общую производительность коммутатора.

Цель изобретения повышение пропускной способности каналов многокаскадного оптоэлектронного коммутатора изображений, в том числе изображений, отображающих параллельным кодом двоичную информацию, и его общей производительности.

Указанная цель достигается тем, что в каскады оптических межсоединений коммутатора введены элементы, вращающие на 90oC плоскость поляризации линейно-поляризованного света, и дополнительные поляризационно-чувствительные расщепители, четвертьволновые пластинки и плоские отражающие элементы, а также применена иная топология соединительной сети.

На фиг. 1 приведена блок-схема предлагаемого многокаскадного оптоэлектронного коммутатора размера 2N x 2N; на фиг.2 оптическая схема блока межсоединений; на фиг.3 топология соединений входных и выходных каналов для p- и s-поляризованных световых пучков; на фиг.4 схема блока межсоединений с M= 4x4 входными и M=4x4 выходными оптическими каналами.

Предлагаемый многокаскадный оптоэлектронный коммутатор изображений с 2N входными (N 2r, r=1,2,3,) и 2N выходными оптическими каналами (портами) содержит оптически связанные блок C сведения p- и s-поляризованных входных изображений с 2N оптическими входами (входы 1,2,N для p- и входы N+1, N+2,2N для s-поляризованных изображений), являющимися входными портами коммутатора, и N оптическими выходами; и идентичных управляемых каскадов Ak (k=1,2,3.K, где K logN+1 в случае блокируемого и K 2logN+1 в случае настраевомо-неблокируемого коммутатора), выполненных на основе пространственно-временных модуляторов света с N индивидуально управляемыми переключателями плоскости поляризации света; K-1 размещенных между ними каскадов оптических межсоединений БM (r типов) с N оптическими входами и N оптическими выходами, каждый из которых состоит из N/M блоков межсоединений IM с M оптическими входами и M оптическими выходами (M N, N/2, N/4,2 или M N/2m-1, m 1,2,3,r, где r logN); блока P разведения p- и s-поляризованных выходных изображений с N оптическими входами и 2N оптическими выходами (выходы 1,2,N для p- и выходы N+1, N+2,2N для s-поляризованных изображений), являющимися выходными портами коммутатора; и блок управления БК, выходы которого подключены к пространственно-временным модуляторам света.

Блок сведения p- и s-поляризованных изображений может быть выполнен, например, на основе поляризационно-чувствительного расщепителя, две входные ортогональные грани которого оптически связаны с 1,2.N и N+1,N+2,2N входными портами коммутатора, а его третья грань -с N оптическими входами первого управляемого каскада A1. Блок разведения изображений P может быть выполнен, например, на основе поляризационно-чувствительного расщепителя также, как и блок C, если его оптические входы и выходы поменять местами.

Управляемые переключатели плоскости поляризации света при подаче на них управляющих сигналов поворачивают плоскость поляризации проходящих световых пучков на 90o и могут быть выполнены, например, на основе электрооптических материалов или жидких кристаллов.

Входящие в каскады оптических межсоединений БM блоки IM (блоки типа M) обеспечивают равенство и неизменность длин оптических путей световых пучков как p-поляризованных , так и для s-поляризованных (0) изображений, а также фокусировку передаваемых через коммутатор изображений. Каждый из этих блоков состоит из последовательно расположенных, оптически связанных субблока маршрутизации IM1 с M входными и двумя выходным оптическими каналами, который выполнен из четырех поляризационно-чувствительных расщепителей (два входных 1-1 и два выходных 1-2), пропускающих p и отражающих в ортогональном направлении s компоненту падающих на их диагональную грань световых пучков, шести элементов 1-3, вращающих на 90o плоскость поляризации в отраженных от них линейно-поляризованных световых пучков и состоящих, например, из соответствующим образом ориентированной четвертьволновой пластинки 1-3-1 и плоского интерференционного зеркала 1-3-2, пяти элементов 1-4, вращающих на 90o плоскость поляризации проходящего линейно-поляризованного света, например, соответствующим образом ориентированная полуволновая пластинка, и двух входных коллективных (1-5-1) и двух выходных (1-5-2) объективов с фокусными расстояниями FM1, размещенных соответственно перед входными и после выходных поляризационно-чувствительных кубиков на фокусном расстоянии (по ходу светового луча) относительно друг друга, и субблока объективов IM2 с двумя входными и M выходными оптическими каналами, который выполнен из двух входных (1-6-1), двух выходных (1-6-2) объективов с фокусными расстояниями FM2, установленных на фокусном расстоянии относительно друг друга.

При показанной на фиг.2 компоновке элементов блока межсоединений IM сфокусированный p-поляризованный световой пучок, поступающий, например, по входному оптическому каналу 1, проходит через первый коллективный объектив 1-5-1 субблока IM1, первую грань первого входного поляризационно-чувствительного расщепителя 1-1, его диагональную и третью грани, вторую полуволновую пластинку 1-4 и первую грань первого выходного поляризационно-чувствительного расщепителя 1-2, отражается диагональной гранью этого расщепителя к его четвертой грани; проходя через четвертьволновую пластинку 1-3-1, превращается в циркулярно-поляризованный пучок; отражается элементом 1-3-2, вновь проходит в обратном направлении через четвертьволновую пластинку 1-3-1, превращаясь в линейно-поляризованный пучок с ортогональным направлением поляризации; проходит через диагональную грань первого выходного поляризационно-чувствительного расщепителя 1-2 и установленную на его второй грани четвертьволновую пластинку 1-3-1, превращаясь в циркуляционно-поляризованный пучок; отражается элементом 1-3-2, вновь проходит через четвертьволновую пластинку, превращаясь в линейно-поляризованный сигнал, отражается от диагональной грани поляризационно-чувствительного расщепителя, проходит через четвертую полуволновую пластинку, первый выходной объектив 1-5-2 субблока IM1, первые входной (1-6-1) и выходной (1-6-2) объективы субблока 1M2 и попадает в виде сфокусированного p-поляризованного светового пучка в выходной оптический канал М/2.

Если на первую грань первого поляризационно-чувствительного расщепителя 1-1 из канала 1 падает s-поляризованный световой пучок, то он отражается диагональной гранью этого расщепителя, проходит через его четвертую грань и оптически связанную с этим выходом первую полуволновую пластинку 1-4, превращаясь в p-поляризовыанный световой пучок; проходит через первую грань второго входного поляризационно-чувствительного расщепителя 1-1, его диагональную грань, в прямом направлении через размещенную за третьей гранью этого поляризационно-чувствительного расщепителя четвертьволновую пластинку 1-3-1 и, отразившись от установленного за этой пластинкой отражающего элемента 1-3-2 и пройдя через четвертьволновую пластинку 1-3-1 в обратном направлении, превращается в s-поляризованный световой пучок, который, отразившись от диагональной грани второго входного поляризационно-чувствительного расщепителя 1-1, пройдя через его вторую грань, четвертую полуволновую пластинку 1-4, первую, диагональную и третью грани второго выходного поляризационно-чувствительного расщепителя 1-2, пятую полуволновую пластинку 1-4, второй выходной объектив 1-5-2, вторые входной (1-6-1) и выходной (1-6-2) объективы, попадает в выходной оптический канал M в виде сфокусированного s-поляризованного светового пучка.

Из оптической схемы фиг.2 следует, что прохождение через элементы блока межсоединений световых пучков входных оптических каналов 2,3,M/2 подобно каналу 1. Прохождение через элементы этого блока p- и s-поляризованных световых пучков оптических каналов 1+M/2,2+M/2,N, падающих на четвертую грань второго входного поляризационно-чувствительного расщепителя 1-1 вследствие симметрии оптической схемы, аналогично прохождению световых пучков входных каналов 1,2,M/2: p-поляризованные пучки проходят соответственно в выходные каналы N,2+M/2,1+M/2, а s-поляризованные соответственно в выходные каналы 1,2, M/2. Топология реализуемых блоком межсоединений IM оптических связей отображается одномерным двудольным графом и для частного случая M 8 поясняется на фиг. 3. Как показано в [3] такая топология межкаскадных соединений изоморфна топологиям соединительных сетей типа Бэняна и на основе совершенной тасовки.

Длины оптических путей Sp и Ss, соответственно, p- и s-поляризованных сигналов в субблоке IM1 при любых соединениях входных и выходных каналов блока IM вследствие таутохронности его оптической системы равны длине оптического пути световых лучей, входящих в блок IM в направлении главной оптической оси: Sp 4nLM + 2lн + 4lQ + и Ss 4nLM + 3lн + 2lQ + D, где LM длина стороны поляризационно-чувствительных расщепителей, n - их показатель преломления, lQ и lн длины оптических путей, соответственно для четверть- и полуволновой пластинок, D длина оптического пути в объективах 1-5-1 и 1-5-2.

Поскольку lн 2lQ, то длины оптических путей Sp и Ss равны.

Вариант блока межсоединений IM для двухкоординатного многокаскадного оптоэлектронного коммутатора изображений при N 22r отличается тем, что поляризационно-чувствительные расщепители I-1 и I-2 имеют форму прямоугольных параллелепипедов с ребрами LM 2LM LM, используются плоские отражающие элементы 1-3-2, полу (1-4) и четвертьволновые (1-3-1) пластинки размера LM 2LM и квадратные матрицы 1-5 и 1-6 из четырех сферических объективов, причем первый и третий и второй и четвертый входные коллективные объективы 1-5-1 оптически связаны, соответственно, с первой гранью первого и четвертого гранью второго входного параллелепипеда 1-3-1, первый и третий и второй и четвертый выходные объективы 1-5-2 через четвертую и пятую полуволновые пластинки оптически связаны с третьими гранями, соответственно, первого и второго выходного параллелепипедов 1-3-2. Такой двухкоординатный (объемный) коммутатор можно рассматривать состоящим из каскадов БMX и БMY, реализующих, соответственно, x и y межсоединения, каждый из которых содержит 2r плоских каскадов оптических межсоединений БM, выполненных по схеме фиг.2а, причем каскады x и y межсоединений развернуты относительно друг друга на 90o вокруг горизонтальной оптической оси, и каскадов управления управления Ak, которые выполнены в виде квадратных матриц из NxN модуляторов плоскости поляризации света.

Вариант предлагаемого двукоординатного многокаскадного коммутатора (фиг. 4) отличается тем, что в блоках межсоединений выходные поляризационно-чувствительные расщепители 1-2 развернуты относительно входных 1-1 на 90o вокруг горизонтальной оптической оси.

В двухкоординатном многокаскадном оптоэлектронном коммутаторе каждый блок межсоединений IM (блок типа M) имеет MxM оптически входных и MxM оптических выходных каналов, которые оптически связаны с коллективными входными 1-5-1 и коллективными выходными 1-6-2 объективами, причем с каждым из объективов связана группа, состоящая из M/2 строк и M/2 столбцов каналов. Для p-поляризованных пучков оптическая система блока представляет собой систему, состоящую из (см. фиг.2 и фиг.4) четырех зеркал и двухкомпонентной оборачивающей системы, и поэтому для таких пучков в группах каналов, связанных первым, вторым, третьим и четвертым входными и выходными коллективными объективами, реализуются оптические соединения и строк входных оптических каналов. Для s-поляризованных пучков оптическая система блока представляет собой систему, состоящую из трех зеркал и двухкомпонентной оборачивающей системы, и поэтому для таких пучков в группах каналов, связанных четными и нечетными объективами, реализуются соединения, как в зеркальной системе, т.е. с транспортированием строк входных оптических каналов.

Такой тип соединителей сети отображается двумерным двудольным графом, который может быть математически описан следующим образом. Если номера оптических каналов, входящих в группы, связанные с первым, третьим и четвертым объективами блока межсоединений IM, обозначить, соответственно, как aif bif cij и dij, где i, j 1,2,M/2, то для p-поляризованных пучков соединяются входные и выходные каналы и для s-поляризованных пучков соединяются каналы 

Предлагаемый оптоэлектронный коммутатор двумерных изображений работает следующим образом. Предположим, что во входных оптических каналах 1,2,N формируются p-поляризованные изображения И1,И2,ИN, а во входных каналах N+1, N+2,2N формируются s-поляризованные изображения И1+N,И2+N,И2N. Блоком управления БУ для каждого из входящих в коммутатор управляющих каскадов Ak (k= 1,2,K) вырабатываются комбинации сигналов управления модуляторами плоскости поляризации Uk= Uk1, Uk2,KkN} соответствующие требуемой картине соединений входных и выходных каналов. После завершения переходных процессов в управляемых модуляторах плоскости поляризации формируемые во входных каналах изображения передаются в выходные каналы 1,2,2N в соответствии с установившимися маршрутами соединения. Таким же образом работает двумерный коммутатор. Различие состоит только в том, что, поскольку число формируемых во входных оптических каналах коммутатора p- и s-поляризованных изображений равно N2, то блок управления БУ вырабатывает комбинации из N2 управляющих сигналов.

Возможные параметры предлагаемого оптоэлектронного коммутатора изображений могут быть оценены следующим образом. Число элементов в передаваемом изображении qxq (например, число бит, передаваемых по каналам параллельно в виде групповой информации) определяется размерами поляризационно-чувствительных расщепителей и угловой апертурой NA оптической системы. Из геометрии блока межсоединений (см. фиг.2) следует, что числовая апертура оптической системы NA в предположении, что LM >> lн, lQ, не может превышать величины NA 0,125n, где n 1,5 -показатель преломления поляризационно-чувствительных расщепителей. Если в качестве источников излучения, формирующих световые картины на входах коммутатора, используются одномодовые лазеры с гауссовым распределением интенсивности, то, как известно, в многокаскадных дифракционно-ограниченных оптических системах при оптимальном радиусе гауссова пучка дифракционные световые потери не превышают несколько процентов при концентрации энергии в формируемых выходных каналах световых пятнах (элементах изображения) более 95% При такой концентрации энергии практически исключаются взаимные помехи между соседними элементами в передаваемых изображениях, и максимальная плотность элементов в изображениях оценивается соотношением:

max= (2NA/3)2, (1)

где длина волны оптического излучения.

При использовании источников излучения с l = 0,9 мкм на основании (1) найдем для максимально возможной плотности дискретных элементов в передаваемых изображениях max 2106 см-2 при диаметре элементов приблизительно 7 мкм. Если в двухкоординатном коммутаторе размера 2N2 x 2N2 в блоке межсоединений типа N используются поляризационно-чувствительные расщепители с ребром LN 5 см, то общий объем передаваемой в пиковом режиме по всем 2N2 оптическим каналам информации может теоретически достигать 4108 бит с возможностью передачи по каждому оптическому каналу коммутатора, например, с числом портов, равным 128 (N 8), групповой информации из qxq приблизительно равно 3106 бит. Учитывая неизбежные аберрации оптической системы и требование простоты ее юстировки, а также возможности создания матриц GaAs вертикально излучающих лазеров и матриц фотоприемников, в практических разработках можно считать реальным формировать, передавать и регистрировать одновременно по всем 2N2 оптическим каналам информационные массивы из приблизительно 107 бит; при этом в случае коммутатора со 128 портами передаваемые по оптическим каналам изображения могут содержать до приблизительно 8104 дискретных элементов при шаге между ними приблизительно 45 мкм.

Вследствие того, что в предлагаемом коммутаторе изображения всех входных портов передаются во входные порты через оптическую систему, каждая компонента которой состоит из четырех, а не одного, объективов, то при одной и той же светосиле объективов общий объем передаваемой по всем оптическим каналам двухкоординатного (т.е. объемной конструкции) коммутатора информации, по крайней мере, в четыре раза больше, чем в прототипе. В случае коммутатора плоской конструкции достигается не менее чем двукратный выигрыш.

Темп передачи информации по любой соединенной паре оптических каналов W (произведение пространственной и временной полосы частот) определяется как произведение числа элементов в передаваемом изображении и скорости передачи информации V бит/с (т.е. W q2V), достижимой при заданной вероятности потери информации. Предельное значение W ограничено причинами энергетического характера: доступным уровнем непрерывно генерируемой световой мощности P, допустимым уровнем тепловыделения Q и пороговой чувствительностью фотоприемников Eп. В отсутствии световых потерь W = QL22/Eп. При Q 10 Вт/см2, L2 1 см и Eп 1 ФДж (порог надежного срабатывания фотоприемника при использовании в качестве источников излучения одномодовых лазеров с характерной для них пуассоновской статистикой фотонов) темп передачи информации может достигать величины W 10 Pбит/с. В реальных матрицах с большим числом элементов пороговая чувствительность фотоприемников не превышает Eп 10 ФДж и коэффициент полезного действия GaAs лазеров 10% Поэтому в случае использования матрицы лазеров с общей излучаемой мощностью P = Q 1 Вт при тепловыделении в ней Q 10 Вт и тепловыделении в матрице фотоприемников Q 1 Вт возможен темп передачи информации W 0,1 Pбит/с, что более чем в 1000 раз превышает темп передачи в известных системах коммутации потоков информации. При этом в случае предлагаемого коммутатора, например размера 128x128, его суммарная (т.е. всех каналов) пиковая производительность может достигать величины Wсум 10 Pбит/с.

Сравнение величин W и Wсум, достижимых в предлагаемом коммутаторе и прототипе, показывает, что в прототипе вследствие виньетирования световых пучков (при прочих равных условиях) эти величины примерно в 10-50 раз меньше. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



1. Многокаскадный оптоэлектронный коммутатор с 2Nr, где N 2r, r 1, 2, 3, входными оптическими каналами и с 2N выходными оптическими каналами, содержащий оптически связанные блок сведения p- и s-поляризованных входных изображений с 2N оптическими входами, являющимися входными портами коммутатора, и N оптическими выходами, K идентичных управляемых каскадов, где K logN + 1 в случае блокируемого и K 2logN + 1 в случае настраевоемо-неблокируемого коммутатора, выполненных на основе пространственно-временных модуляторов света с N индивидуально управляемыми переключателями плоскости поляризации света, причем входы первого управляемого каскада оптически связаны с выходами блока сведения входных изображений, K 1 размещенных между ними каскадов межсоединений r logN типов с N оптическими входами и N оптическими выходами, причем каждый из каскадов межсоединений М-го типа, где М N/2m-1, m 1, 2, 3, r, состоит из оптически связанных двух входных коллективных объективов, двух выходных объективов, поляризационно-чувственного расщепителя, пропускающего p и отражающего в ортогональном направлении s компоненту падающих на их диагональную грань световых пучков, первая грань которого через первый объектив связана с N входными оптическими каналами каскада межсоединений, двух четвертьволновых пластинок и двух отражающих элементов, блок разведения p- и s-поляризованных выходных изображений с N оптическими входами, связанными с оптическими выходами K-го управляемого каскада, и 2N оптическими выходами, являющимися выходными портами коммутатора, и блок управления, выходы которого подключены к индивидуально управляемым переключателям управляемых каскадов, отличающийся тем, что каскады межсоединений M-го типа выполнены в виде N/M идентичных блоков межсоединений с M оптическими входами и M оптическими выходами, в каждый из этих блоков введены второй входной, первый и второй выходные поляризационно-чувствительные расщепители, пять элементов, вращающих на 90o плоскость поляризации проходящего через них линейно поляризованного света, четыре четвертьволновые пластинки и четыре отражающие элемента, входящие в этот блок отражающие элементы выполнены в виде плоских зеркал, первая грань первого входного и четвертая грань второго входного поляризационно-чувствительных расщепителей оптически связаны через первый и второй входные коллективные объективы соответственно с входными каналами 1, 2, М/2 и 1 + М/2, 2 + М/2, М блока межсоединений, вторая грань первого и третья грань второго входных поляризационно-чувствительных расщепителей, вторые и четвертые грани первого и второго выходных поляризационно-чувствительных расщепителей оптически связаны через четвертьволновые пластинки соответственно с первым, вторым, третьим, четвертым, пятым и шестым отражающими элементами, четвертая грань первого входного и первая грань второго входного, третья грань первого входного и первая грань первого выходного, вторая грань первого входного и первая грань второго выходного поляризационно-чувствительных расщепителей оптически связаны между собой соответственно через первый, второй и третий элементы, вращающие на 90o плоскость поляризации проходящего линейно поляризованного света, и субблок объективов с двумя оптическими входами и двумя оптическими выходами, состоящий из установленных на фокусном расстоянии двух входных и двух выходных объективов, оптически связаны соответственно с выходными каналами 1, 2, М/2 и 1 + М/2, 2 + М/2, М блока межсоединений, первый и второй входные коллективные объективы и соответственно первый и второй выходные объективы установлены относительно друг друга на фокусном расстоянии по ходу светового луча.

2. Коммутатор по п.1 для N 2r 2r, отличающийся тем, что каскады межсоединений выполнены в виде развернутых на 90o вокруг горизонтальной оптической оси каскадов x и y межсоединений, управляемые каскады выполнены в виде квадратных матриц из 2r 2r модуляторов плоскости поляризации света, входящие в блоки межсоединений поляризационно-чувствительные расщепители имеют форму прямоугольных параллелепипедов с квадратными основаниями размера Lm Lm и гранями Lm 2Lm, плоские отражающие элементы, четвертьволновые пластинки и элементы, вращающие на 90o плоскость поляризации проходящего через них линейно поляризованного света, имеют форму прямоугольников размера Lm 2Lm, и объективы сгруппированы в квадратные матрицы из четырех сферических объективов, причем первый, третий и второй, четвертый входные коллективные объективы оптически связаны соответственно с первой гранью первого и четвертой гранью второго входных поляризационно-чувствительных параллелепипедов, первый, третий и второй, четвертый выходные объективы через четвертую и пятую полуволновые пластинки оптически связаны с третьими гранями соответственно первого и второго выходных поляризационно-чувствительного параллелепипедов, первый, третий и второй, четвертый входные объективы субблока объективов оптически связаны с выходами соответственно четвертого и пятого элементов, вращающих на 90o плоскость поляризации проходящего через них линейно поляризованного света.

3. Коммутатор по п.2, отличающийся тем, что входящие в блоки межсоединений выходные поляризационно-чувствительные расщепители развернуты на 90o вокруг горизонтальной оси относительно входных поляризационно-чувствительных расщепителей.




ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал
Электроника и электротехника




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+автомобильная -сигнализация".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "датчик" будут найдены слова "датчик", "датчики" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("датчик!").


Металлоискатели и металлодетекторы | Электронные устройства охраны и сигнализации | Электронные устройства систем связи | Приемные и передающие антенны | Электротехнические и радиотехнические контрольно-измерительные приборы и способы электроизмерений | Электронные устройства пуска, управления и защиты электродвигателей постоянного и переменного тока | Электродвигатели постоянного и переменного тока | Магниты и электромагниты | Кабельно-проводниковые и сверхпроводниковые изделия


Рейтинг@Mail.ru