СПОСОБ ПОЛУЧЕНИЯ МАГНИТНЫХ ПОЛИМЕРНЫХ КОМПОЗИЦИЙ НА НАНОРАЗМЕРНЫХ ФЕРРИТОВЫХ ЧАСТИЦАХ ДЛЯ РАДИОТЕХНИЧЕСКИХ ИЗДЕЛИЙ

СПОСОБ ПОЛУЧЕНИЯ МАГНИТНЫХ ПОЛИМЕРНЫХ КОМПОЗИЦИЙ НА НАНОРАЗМЕРНЫХ ФЕРРИТОВЫХ ЧАСТИЦАХ ДЛЯ РАДИОТЕХНИЧЕСКИХ ИЗДЕЛИЙ


RU (11) 2315382 (13) C1

(51) МПК
H01F 10/00 (2006.01)
H01F 1/113 (2006.01) 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 25.01.2008 - действует 

--------------------------------------------------------------------------------

Документ: В формате PDF 
(21) Заявка: 2006126469/09 
(22) Дата подачи заявки: 2006.07.20 
(24) Дата начала отсчета срока действия патента: 2006.07.20 
(45) Опубликовано: 2008.01.20 
(56) Список документов, цитированных в отчете о поиске: RU 2239250 С2, 27.10.2004. RU 2160697 С2, 20.12.2000. RU 2057379 C1, 27.03.1996. RU 1612893 С, 15.11.1994. US 6139766 А, 31.10.2000. JP 2000323311 А, 24.11.2000. JP 11214219 А, 06.08.1996. 
(72) Автор(ы): Севостьянов Владимир Петрович (RU); Ракитин Сергей Александрович (RU); Кособудский Игорь Донатович (RU); Холкина Татьяна Владимировна (RU); Жукова Екатерина Михайловна (RU) 
(73) Патентообладатель(и): Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный университет имени Н.Г. Чернышевского" (RU) 
Адрес для переписки: 410012, г.Саратов, ул. Московская, 155, СГУ, ПЛО, Н.В. Романовой 

(54) СПОСОБ ПОЛУЧЕНИЯ МАГНИТНЫХ ПОЛИМЕРНЫХ КОМПОЗИЦИЙ НА НАНОРАЗМЕРНЫХ ФЕРРИТОВЫХ ЧАСТИЦАХ ДЛЯ РАДИОТЕХНИЧЕСКИХ ИЗДЕЛИЙ

Изобретение относится к области электротехники, в частности к способу получения магнитной полимерной композиции на наноразмерных ферритовых частицах, предназначенной для применения в высокочастотных радиоустройствах в электрическом оборудовании автотранспорта. Способ включает получение полимерной композиции, состоящей из термопластичной полимерной матрицы, в которую методом высокоскоростного термического разложения вводят наноразмерные ферритовые частицы, при этом в процессе разложения металлосодержащих соединений в расплаве полимера на расплав дополнительно воздействуют высоковольтным короткоимпульсным электрическим разрядом напряжением 15-20 кВ, длительностью 1-10 мс, с количеством импульсов 80-100. Техническим результатом изобретения является стабилизация гранулометрического состава композиции и равномерность распределения ферритов в матрице. 2 з.п. ф-лы, 1 ил., 1 табл. 




ОПИСАНИЕ ИЗОБРЕТЕНИЯ


Изобретение относится к технологии получения магнитных полимерных композиционных материалов, нашедших широкое применение в качестве магнитной компоненты в радиотехнических изделиях и электрических системах автотранспорта, различного рода трансформаторов, резонансных структурах, антеннах и т.д.

Известно техническое решение (Рыбкин Л.И. Высокочастотные ферромагнетики. М., 1960, 528 с.), в котором в качестве магнитных ферромагнитных порошков были использованы сплавы альсифера, пермаллоя и карбонилового железа, а связка состояла из бекилита, полистирола, жидкого стекла, стеклоэмали.

Магнитопласты получались механическим смешиванием магнитных порошков и полимерных связующих в определенных весовых пропорциях при их тщательным перемешивании и последующем механическом прессовании.

Этот способ был позже усовершенствован за счет дополнительного спекания порошков и пластификаторов при высоких температурах (Патент США №5772820).

Недостатки предложенных способов - трудность как в получении, так и в регулировании гранулометрического состава низкодисперсных (менее 1 мкм) магнитных порошков, что, в конечном счете, принципиально влияет на качество работы радиотехнических приборов в высокочастотном радиодиапазоне.

Применение различных физических методов получения пленок осаждением их из паровой фазы (Патент США №6030454), при испарении ферритовых мишеней под воздействием лазера (Патент США №5320881) или в вакууме (Патент США №5460704) затруднено, так как требуется использование дорогостоящего оборудования, а полученные магнитные системы имеют малую стабильность по адгезии и ограничение при реализации их на больших поверхностях.

Наиболее близким является изобретение (Патент РФ №2239250, МПК7 Н 01 F 10/00), в котором магнитные композиции были получены из магнитоупорядоченных однодоменных частиц размером от 1 до 30 нм с концентрацией до 50 вес.% металлорганических соединений вида

RxM 1M2Xm,

(где Rx - органический радикал, M 1 - переходные металлы Fe, Co, Ni, Mn, Cr, Cu; М 2 - редкоземельные металлы подгруппы лантана, их окислов или комбинаций указанных металлов или окислов, углерода, азота, кремния, германия, бора и меди; Хm - летучий радикал, их растворов или комбинаций), методом высокоскоростного термического разложения карбонилов, ацетатов, формиатов металлов при равномерном их распределении в расплаве полимерной матрицы из размягчающихся при нагревании и затвердевающих при охлаждении полиэтилена, полиэтиленгликоля, полистирола, поликарбоната, полиамида, нейлона, нитрила, сульфохлорированного полиэтилена.

Согласно предложенному выше способу исходная смесь, содержащая до 45 вес.% металла в минеральном масле, через дозатор по каплям добавлялась в реактор, заполненный инертным газом (аргон), и расплавом полимерного связующего. Реакционная смесь при температуре 250-350°C (±5°С) интенсивно перемешивалась в течение 60 мин. В результате термического воздействия металлорганические соединения RxM1M 2Xm, разлагались на металлы с выделение газообразных продуктов СО, СО2, водорода и воды.

Недостатком предложенного изобретения является следующее.

Наноразмерные частицы ферромагнитных металлов, полученных из металлорганических соединений R xM1M2X m, методом высокоскоростного термического разложения обладают высокой поверхностной энергией. Поэтому в процессе синтеза происходит их спонтанная агломерация (слипание). В результате технологического процесса в полимерной связующей формируются до 50% слипшиеся частицы металлов, размером 10-15 мкм, что делает процесс неконтролируемым и принципиально снижает магнитные характеристики магнитной полимерной композиции в целом.

Задачей предлагаемого способа получения магнитных полимерных композиций является обеспечение стабильности гранулометрического состава наноразмерных ферритовых частиц в процессе высокоскоростного термического разложения металлорганических соединений и введения их в полимерную матрицу.

Техническим результатом является уменьшение концентрационной и временной дисперсии наноразмерных ферромагнитных металлических частиц и их агломератов за счет того, что в процессе всего цикла получения магнитной полимерной композиции реакционная смесь дополнительно подвергается высоковольтному короткоимпульсному электрическому разряду.

Поставленная задача решается тем, что в способе получения магнитных полимерных композиций на наноразмерных ферритовых частицах для радиотехнических изделий, включающем высокоскоростное термическое разложение металлосодержащих соединений в расплаве полимера, согласно решению в процессе разложения на расплав воздействуют высоковольтным короткоимпульсным электрическим разрядом напряжением 15-20 кВ, количеством импульсов 80-100.

Изобретение поясняется чертежом, на котором приведена схема установки для реализации способа, где:

1 - реактор с нагревателем, 2 - мешалка, 3 - электродвигатель мешалки, 4 - регулировка термопары, 5 - термопара, 6 - трубка ввода газа (аргона), 7 - трубка вывода газа (аргона), 8 - емкость с раствором металлсодержащего соединения, 9 - дозатор металлсодержащего соединения, 10 - электроды высоковольтной импульсной установки.

Способ основан на получении полимерной композиции, состоящей из термопластичной полимерной матрицы, в которую методом высокоскоростного термического разложения вводятся с концентрацией до 50 вес.% наноразмерные 1-30 нм ферритовые частицы металлов.

Способ осуществляется следующим образом. В металлический реактор с нагревательной системой 1 помещают минеральное масло и полимер. В качестве полимера выбирают размягчающиеся при нагревании и затвердевающие при охлаждении материалы, такие как полиэтилен, поликарбонат, полиэтиленгликоль, полистирол, полиамид, нейлон, нитрил, сульфохлорированный полиэтилен и др.

Смесь масла и полимера при нагревании реактора 1 доводится до расплава. Далее реактор 1 заполняют инертным газом, например аргоном, через трубку ввода 6, избыток которого выходит через трубку 7. С помощью электродвигателя 3 включают мешалку 2 и по каплям, порционно через емкость 8 и дозатор 9 в реактор 1 вводят непосредственно в расплав раствор соединений, содержащих металл, таких как карбонилы, ацетаты, формиаты металлов, металлорганические соединения вида RxM1 M2Xm, где R x - органический радикал, M1 - переходные металлы Fe, Co, Ni, Mn, Cr, Cu; М2 - редкоземельный металл; Хm - летучий радикал, или их комбинации.

Температуру синтеза через регулятор 4 и термопары 5 поддерживают на уровне 250-350±5°С.

Полученную смесь продолжают нагревать при той же температуре еще в течение 60 мин после добавления всего рассчитанного количества металлсодержащего материала при непрерывном перемешивании мешалкой 2. В процессе синтеза на электроды 10 подают высоковольтный импульсный разряд (электрогидравлический удар) напряжением 15-20 кВ, продолжительностью импульса 1-10 мс, количество импульсов 80-100.

Далее смесь охлаждают до комнатной температуры, выливают из реактора 1, фильтруют и высушивают на воздухе.

Экспериментально доказано, что такое воздействие при указанных выше режимах на полученный гетерогенный расплав приводит к тому, что каждая твердая ферритовая частица обволакивается системой газовых пузырьков, которые длительное время держат ее «на плаву», не давая агломерироваться с другими. Это способствует улучшению смачиваемости на границе раздела поверхности «твердая частица - жидкость», что обеспечивает более сильное сцепление газовых пузырьков на поверхности твердых частиц, и, как следствие, взмучиванию и флотации. Все это стабилизирует и сохраняет гранулометрический состав частиц на длительное время (более 24 ч).

Приводимые ниже примеры иллюстрируют, но не ограничивают сущность предлагаемого изобретения.

Пример 1.

Пентакарбонил железа Fe(CO)5 растворяется в минеральном масле с концентрацией 45 вес.%, помещается в емкость 8 (см. чертеж) и через дозатор 9 по каплям заливается в реактор 1, в котором предварительно расплавляется полиэтилен, а через трубки 7 и 8 пропускается инертный газ аргон. Синтез осуществляется при интенсивном перемешивании реакционной смеси в реакторе 1 мешалкой 2, снабженной электродвигателем 3. Температура процесса составляет 320°С в течение 60 мин. Температура поддерживается с точностью ±5°С за счет регулятора температуры 4 термопарой 5. Синтез протекает по реакции

Fe(CO)5 =Fe +5CO .

В процессе синтеза на электроды 10 подается напряжение 15-20 кВ, продолжительность импульса 3 мс, количество импульсов 80-100.

Пример 2.

Для доказательства эффективности влияния электрогидравлическое воздействие на кинетику седиментации гетерогенного расплава 50 мл 20%-ной смеси металлических наноразмерных частиц железа или никеля в минеральном масле непосредственно после синтеза помещали в мерный цилиндр диаметром 2 см и емкостью 100 мл. При седиментации концентрация наноразмерных магнитных частиц во времени ближе ко дну цилиндра увеличивается.

В итоге делается вывод, что при синтезе наночастиц ферритовых порошков по методу, описанному в известном изобретении (Патент РФ №2239250, МПИ 7 Н 01 F 10/00), укрупнение наноразмерных частиц наблюдалось через 2-3 ч).

Электрогидравлическое воздействие на гетерогенные расплавы, как описано в примере 1, замедляет процесс седиментации до пяти суток, что делает систему более стабильной во времени и тем самым технологичнее.

Эти данные подтверждаются оптическими методами: слежением за процессом седиментации в объективе катетометра; а также независимыми физическими методами исследования, такими как рентгеновское малоугловое рассеяние, просвечивающая электронная и Мессбауэровская спектроскопия.

Исследования показали наличие в гетерогенном расплаве и в полимерной матрице до 80% металлических частиц размером 1-30 нм, которые начинают медленно агломерироваться примерно через двое суток и практически заканчивается через 10 суток.

Пример 3.

Образцы, полученные в соответствии с примером 1, обладали высокой удельной намагниченностью насыщения, превышающей 40 Гс·см3/г.

Пример 4.

В таблице представлены различные режимы электрогидравлического воздействия при синтезе наноразмерных ферромагнитных частиц металлосодержащих соединений в полимерных матрицах. Продолжительность импульса 1-10 мс.

ТАБЛИЦА 
№/№ п/п Напряжение на электродах, кВ Количество импульсов Примечание 
1 8-10 80-100 Наблюдается большая концентрационная и временная дисперсия наноразмерных ферромагнитных металлических частиц и их агломератов. 
2 8-10 120-140 Наблюдается большая концентрационная и временная дисперсия наноразмерных ферромагнитных металлических частиц и их агломератов. 
3 12-14 80-100 Наблюдается концентрационная и временная дисперсия наноразмерных ферромагнитных металлических частиц и их агломератов. 
4 22-25 80-100 Наблюдается разложение минерального масла и полимерной связующей. 
5 22-25 50-60 Наблюдается разложение минерального масла и полимерной связующей. 
6 15-20 80-100 Концентрационная и временная дисперсия наноразмерных ферромагнитных металлических частиц и их агломератов минимальная. Агломерация частиц начинается через двое суток. 





ФОРМУЛА ИЗОБРЕТЕНИЯ


1. Способ получения магнитных полимерных композиций на наноразмерных ферритовых частицах для радиотехнических изделий, включающий высокоскоростное термическое разложение металлсодержащих соединений в расплаве полимера, отличающийся тем, что в процессе разложения на расплав дополнительно воздействуют высоковольтным короткоимпульсным электрическим разрядом напряжением 15-20 кВ, длительностью 1-10 мс, при количестве импульсов 80-100.

2. Способ по п.1, отличающийся тем, что в качестве полимера выбирают полиэтилен, или поликарбонат, или полиэтиленгликоль, или полистирол, или полиамид, или нейлон, или нитрил, или сульфохлорированный полиэтилен.

3. Способ по п.1, отличающийся тем, что в качестве металлосодержащих соединений выбирают карбонилы, или ацетаты, или формиаты металлов, металлорганические соединения вида RxM 1M2Xm, где Rx - органический радикал, M 1 - переходные металлы Fe, Co, Ni, Mn, Cr, Cu; M 2 - редкоземельный металл; Хm - летучий радикал.





ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал
Электроника и электротехника




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+автомобильная -сигнализация".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "датчик" будут найдены слова "датчик", "датчики" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("датчик!").


Металлоискатели и металлодетекторы | Электронные устройства охраны и сигнализации | Электронные устройства систем связи | Приемные и передающие антенны | Электротехнические и радиотехнические контрольно-измерительные приборы и способы электроизмерений | Электронные устройства пуска, управления и защиты электродвигателей постоянного и переменного тока | Электродвигатели постоянного и переменного тока | Магниты и электромагниты | Кабельно-проводниковые и сверхпроводниковые изделия


Рейтинг@Mail.ru