СПОСОБ ИЗГОТОВЛЕНИЯ ПОСТОЯННЫХ МАГНИТОВ

СПОСОБ ИЗГОТОВЛЕНИЯ ПОСТОЯННЫХ МАГНИТОВ 


RU (11) 2127923 (13) C1

(51) 6 H01F41/02 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 25.01.2008 - действует 

--------------------------------------------------------------------------------

(21) Заявка: 97101354/09 
(22) Дата подачи заявки: 1997.01.27 
(45) Опубликовано: 1999.03.20 
(56) Список документов, цитированных в отчете о поиске: JP 2-37081 A, 16.02.90. Белкина А.Д. и др. Исследование путей повышения коррозионной стойкости постоянных магнитов на основе сплава Nd-Fe-B. Тезисы докладов X Всесоюзной конференции по постоянным магнитам, М., 1991. EP 0536421 A1, 14.04.93. EP 0540504 A2, 05.05.93. DE 3510503 A1, 02.10.86. SU 189952 A, 30.01.67. SU 970496 A, 05.11.82. 
(71) Заявитель(и): Открытое акционерное общество Научно-производственное объединение "Магнетон" 
(72) Автор(ы): Селиверстов В.П.; Чубрин В.А. 
(73) Патентообладатель(и): Открытое акционерное общество Научно-производственное объединение "Магнетон" 
Адрес для переписки: 600026, Владимир, ул.Куйбышева, 26, ОАО НПО "Магнетон", патентная группа 

(54) СПОСОБ ИЗГОТОВЛЕНИЯ ПОСТОЯННЫХ МАГНИТОВ 

Изобретение относится к порошковой металлургии, в частности к изготовлению магнитов на основе сплава. Сущность изобретения состоит в том, что в способе изготовления постоянных магнитов на основе сплава Nd-Fe-B, включающем прессование, спекание, тепловую обработку в вакууме или инертной среде, формирующей магнитную структуру сплава, шлифование, нанесение антикоррозионного оксидного покрытия, которое совмещают с тепловой обработкой, при которой формируется магнитная структура, и проводят в неорганическом расплаве, содержащем ионы-пассиваторы Cr2O27-,NO-3,NO-2, при 540-600oC с последующим быстрым охлаждением в воде. Это позволяет упростить технологический процесс, повысить коррозионную стойкость магнитов и соответственно повысить магнитные свойства. 1 табл. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к порошковой металлургии, в частности к изготовлению магнитов на основе сплава Nd-Fe-B, и может быть применено в электротехнической, электронной промышленности и приборостроении.

Известен способ изготовления постоянных магнитов на основе сплава Nd-Fe-B, включающий прессование, спекание, тепловую обработку в вакууме или инертной среде, формирующую магнитную структуру сплава, шлифование и нанесение антикоррозионного оксидного покрытия.

Для повышения коррозионной стойкости магнитов рекомендуются электротехнические и химические покрытия - кадмирование, хромирование, никелирование, пассивирование ортофосфорной кислотой.

Недостатком данных способов является повышенная трудоемкость, недостаточная механическая прочность фосфатных покрытий, а также проникновение электролита в поры, что в последующем приводит к скрытой коррозии магнитов.

Наиболее близким по технической сущности и достигаемому результату к изобретению является способ изготовления магнитов на основе сплава Nd-Fe-B, заключающийся в том, что магнитные композиции формулы R2T14B (R - основной редкоземельный элемент) прессуют, спекают, подвергают тепловой обработке в вакууме или инертной среде, формирующей магнитную структуру, и шлифуют. Поверхности магнитов покрывают алкоголятом металла и при последующем термическом разложении его получают антикоррозионное оксидное покрытие.

Недостатком известного способа является то, что вводятся две дополнительные операции: нанесение алкоголята и его термическое разложение. Кроме того, такие покрытия, как правило, имеют непрочное сцепление с основой, не проникают в поры, не пассивируют их - активность сплава под покрытием сохраняется.

Изобретение направлено на упрощение технологии изготовления магнитов, повышение коррозионной стойкости с одновременным повышением магнитных свойств.

Сущность данного изобретения заключается в том, что в способе изготовления постоянных магнитов на основе сплава Nd-Fe-B, включающем прессование, спекание, тепловую обработку в вакууме или инертной среде, формирующую магнитную структуру сплава, шлифование и нанесение антикоррозионного оскидного покрытия, тепловую обработку совмещают с операцией нанесения антикоррозионного оксидного покрытия и проводят в неорганическом расплаве, содержащем ионы - пассиваторы Cr2O27-, NO-3, NO-2 при температуре 540 - 600oC с последующим быстрым охлаждением магнитов в воде.

В безводном расплаве солей или гидроксидов в присутствии пассиваторов поверхность магнитов переходит в пассивное состояние, в результате чего коррозионный процесс подавляется. В открытых порах и на поверхности магнита формируется плотное и достаточно прочное оксидное покрытие толщиной 5 - 10 мкм, которое защищает поверхность от коррозионного разрушения. Одновременно формируется необходимая кристаллическая структура, которая фиксируется при быстром охлаждении. Вследствие низкого температурного коэффициента расширения сплава Nd-Fe-B растрескиваний при быстром охлаждении не наблюдается. Наличие на поверхности плотной оксидной пленки предотвращает взаимодействие активных компонентов сплава с водой.

Пример. Магниты из сплава Nd-Fe-B после спекания и проведения финишных механических операций загружали в емкость с расплавом двухромовокислого калия (K2Cr2O7) с температурой 560oC. После выдержки в расплаве 45 минут магниты вынимали из расплава и погружали в холодную воду. После этого магниты промывали в теплой воде, контролировали по магнитным свойствам.

Сравнительные коррозионные испытания выполняли по следующей методике. Магниты выдерживали в термовлагокамере при 905oC и относительной влажности 98 - 100% в течение 7 часов. Затем магниты охлаждали вместе с камерой, с конденсацией влаги до комнатной температуры и выдерживали при этих условиях до истечения суток. В дальнейшем цикл повторяли. Коррозионная стойкость оценивалась по времени до появления на поверхности магнитов первых точечных очагов коррозии, видимых невооруженным глазом. Магнитные свойства - остаточная индукция, коэрцитивная сила и коэрцитивная сила по намагниченности проверялись по существующим на производстве методикам. Результаты испытаний сведены в таблицу.

Реализация способа позволяет совместить операции тепловой обработки магнитов с операцией нанесения оксидного коррозионно-стойкого покрытия, повысить коррозионную стойкость магнитов и их магнитные свойства. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



Способ изготовления постоянных магнитов на основе сплава Nd-Fe-B, включающий прессование, спекание, тепловую обработку в вакууме или инертной среде, формирующую магнитную структуру сплава, шлифование, нанесение антикоррозионного оксидного покрытия, отличающийся тем, что тепловую обработку совмещают с операцией нанесения антикоррозионного оксидного покрытия и проводят в неорганическом расплаве, содержащем ионы-пассиваторы Cr2O27-, NO-3, NO-2, при 540-600oC с последующим быстрым охлаждением магнитов в воде.




ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал
Электроника и электротехника




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+автомобильная -сигнализация".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "датчик" будут найдены слова "датчик", "датчики" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("датчик!").


Металлоискатели и металлодетекторы | Электронные устройства охраны и сигнализации | Электронные устройства систем связи | Приемные и передающие антенны | Электротехнические и радиотехнические контрольно-измерительные приборы и способы электроизмерений | Электронные устройства пуска, управления и защиты электродвигателей постоянного и переменного тока | Электродвигатели постоянного и переменного тока | Магниты и электромагниты | Кабельно-проводниковые и сверхпроводниковые изделия


Рейтинг@Mail.ru