ЭЛЕКТРИЧЕСКАЯ СИСТЕМА

ЭЛЕКТРИЧЕСКАЯ СИСТЕМА


RU (11) 2295816 (13) C1

(51) МПК
H02J 3/00 (2006.01)
H02J 3/04 (2006.01) 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ
к патенту Российской Федерации 
Статус: по данным на 28.03.2007 - действует 

--------------------------------------------------------------------------------

Документ: В формате PDF 
(14) Дата публикации: 2007.03.20 
(21) Регистрационный номер заявки: 2005126622/09 
(22) Дата подачи заявки: 2005.08.23 
(24) Дата начала отсчета срока действия патента: 2005.08.23 
(45) Опубликовано: 2007.03.20 
(56) Аналоги изобретения: RU 2256273 C1, 10.07.2005. RU 2205490 С2, 27.05.2003. RU 2046490 С1, 20.10.1995. SU 792475 A1, 30.12.1980. US 4500829 А, 19.02.1985. 
(72) Имя изобретателя: Аграшкина Валентина Леонидовна (RU); Олесов Леонид Александрович (RU) 
(73) Имя патентообладателя: Аграшкина Валентина Леонидовна (RU); Олесов Леонид Александрович (RU) 
(98) Адрес для переписки: 677010, г.Якутск, ул. Маяковского, 114, кв.1, Л.А. Олесову 

(54) ЭЛЕКТРИЧЕСКАЯ СИСТЕМА
Использование: для передачи электрической энергии в электрических сетях с изолированной нейтралью. Технический результат заключается в снятии ограничений как на протяженность электрической системы, так и на ее пропускную способность. В рассматриваемой электрической системе, помимо применения противофазного включения источников электрической энергии, что позволяет выполнить линию электропередачи четырехпроводной и, следовательно, уменьшить потери электрической энергии и напряжения при сохранении того же уровня передаваемой мощности, что и по традиционной двухцепной линии электропередачи с шестью линейными проводами, для устранения несимметрии предлагается ввести включаемые продольно в линию электропередачи реактивные элементы. 8 з.п. ф-лы, 8 ил. 




ОПИСАНИЕ ИЗОБРЕТЕНИЯ


Изобретение относится к электротехнике и может использоваться для передачи электрической энергии в электрических сетях с изолированной нейтралью.

Известна электрическая система, содержащая трехфазные источники электрической энергии с противофазными напряжениями, четырехпроводную линию электропередачи, трехфазные трансформаторы и симметричный трехфазный приемник электрической энергии ([1], прототип).

Указанная электрическая система из-за отсутствия двух линейных проводов принципиально несимметрична, что накладывает ограничения на ее протяженность и величину передаваемой мощности. При увеличении протяженности электрической системы возрастает сопротивление проводов линии электропередачи, что приводит к увеличению падения напряжения на линии и, следовательно, к росту несимметрии напряжения на нагрузке. При увеличении уровня передаваемой мощности возрастает ток в линии, что также к увеличивает падение напряжения на линии и приводит к росту несимметрии напряжения. Согласно ГОСТ 13109-97 несимметрия напряжений на нагрузке в нормальном режиме не должна превышать 2%, в послеаварийном режиме - 4% [2].

Анализ показывает, что при работе указанной электрической системы в режиме передачи номинальной мощности в 10 МВт при напряжении 35 кВ несимметрия напряжения на симметричной нагрузке достигает максимально допустимой величины в 4% уже при протяженности линии 40 км. При увеличении уровня передаваемой мощности, а также несимметричной нагрузке несимметрия напряжения также возрастает.

Целью изобретения является обеспечение качества электроэнергии, увеличение максимальной протяженности электрической системы и ее пропускной способности.

Указанная цель достигается путем генерации комплексных сопротивлений, эквивалентных полным сопротивлениям двух отсутствующих в четырехпроводной линии электропередачи проводов, с помощью включаемых последовательно с линией реактивных сопротивлений.

Структурная схема предлагаемой электрической системы приведена на фиг.1 и содержит два трехфазных источника электрической энергии 1, два трехфазных трансформатора 2, четырехпроводную линию электропередачи 3, трехфазный приемник электрической энергии 4 и включаемые продольно в линию реактивные сопротивления 5.

Принцип работы предлагаемой электрической системы можно пояснить с помощью принципиальных схем, приведенных на фиг.2-4 следующим образом.

В силу симметричности относительно точек m и n приведенной на фиг.2 схемы электрической системы - прототипа, достаточно рассмотреть ее любую половину. При этом, поскольку напряжение между точками тип равно нулю, то между ними может быть включено любое по величине сопротивление, в том числе и равное нулю. Поэтому указанные точки для проведения анализа могут быть соединены, как это показано на фиг.3, где учтены и полные (комплексные) сопротивления линейных проводов Zл. Для определенности положим, что между собой соединены фазы А противофазных источников энергии, так что в рассматриваемой схеме должны быть учтены только сопротивления линейных проводов фаз В и С.

Сопротивления ветвей схемы фиг.3 принципиально различны, поэтому между точками соединения генераторов и нагрузок, обозначенных соответственно 0 и 0 , будет присутствовать напряжение, аналогичное напряжению смещения нейтрали в трехфазных системах при несимметричной нагрузке. Введем в соответствующие ветви по дополнительному реактивному сопротивлению Za, Zb и Zc, как это показано на фиг.4, и потребуем, чтобы токи, текущие в ветвях получившейся схемы, были, во-первых, равны по величине и, во-вторых, чтобы разности фаз токов составляли 2 /3 радиан. В этом случае напряжения на нагрузках будут симметричны. Выбор реактивного характера дополнительных сопротивлений обусловлен отсутствием в них потерь мощности.

Определим полные проводимости ветвей как величины, обратные их полным сопротивлениям Z'а, Z'b, Z 'с:



Напряжение между точками 00' определяется известным из курса электротехники ([3], с.191) выражением:



где Еа, Eb и Ec - комплексные фазные напряжения источников, связанные между собой соотношением



где - оператор трехфазной системы, для которого справедливы выражения 1+а+а2=0; а3 =1.

Тогда токи, текущие в ветвях схемы, равны:



Для них должно выполняться соотношение, подобное (3):



Выражение (2) с учетом (3) можно записать иначе:





Тогда





Умножим правую часть выражения (7-2) в соответствии с (5) на а и приравняем ее правой части (7-1). После сокращения на Еа получим:



Приведем (8) к общему знаменателю и умножим на него обе части равенства. После упрощения получим:



Последнее выражение может быть записано в виде



и при равенстве проводимостей ветвей (Ya=Yb=Yc) является тождеством, что может служить подтверждением справедливости выражения (9).

Выразим из (9), например, Ya:



или



Подставив в (10) выражения для Z 'a, Z'b, Z'c из (1), после упрощения получим:



Выражение (11) можно записать несколько иначе:



Последнее уравнение (12) определяет требуемые величины дополнительных реактивных сопротивлений Z a, Zb и Zc.

Условие (12) имеет очень простое графическое решение на комплексной плоскости - геометрическая сумма дополнительных реактивных сопротивлений Za, Zb и Zc должна равняться полному сопротивлению Zл отсутствующего линейного провода. При этом величины реактивных сопротивлений Zb и Zc следует откладывать по мнимым осям, повернутым относительно исходного положения на угол 120° (для провода В) и 240° - для провода С (фиг.5).

Очевидно, что уравнение (12) имеет бесконечное множество решений. Решение становится однозначным, если ограничиться включением двух реактивных элементов. В этом случае возможны три варианта решения, схематически представленных на фиг.6-8.

Из фиг.6 следует, что полное сопротивление отсутствующего линейного провода Z л может быть сгенерировано путем включения в линейные провода фаз А и С индуктивных сопротивлений.

Такой же результат может быть получен при включении в линейные провода фаз В и С двух емкостных сопротивлений (фиг.7) или индуктивного сопротивления в линейный провод А и емкостного сопротивления в линейный провод В (фиг.8).

Следует особо отметить, что величины дополнительных сопротивлений являются функцией только полного сопротивления линейных проводов, а это означает, что симметрия напряжений на симметричной нагрузке будет обеспечена при любой ее величине и при любых значениях передаваемой мощности. При этом дополнительные сопротивления могут быть включены как со стороны нагрузки, так и со стороны источников электрической энергии, а также частями с обеих сторон линии при условии, что общее сопротивление этих частей (их сумма) удовлетворяет условию (12).

Таким образом, показана возможность получения симметричной системы напряжений на симметричной нагрузке при несимметричности электрической системы в целом. Тем самым предлагаемое техническое решение снимает ограничения на протяженность электрической системы и уровень передаваемой мощности, позволяет обеспечить качество электроэнергии в соответствии с требованиями ГОСТ 13109-97.

Источники информации

1. Описание изобретения за №2256273 от 10.07.2005 в бюллетени №19 к изобретению Электрическая система.

2. ГОСТ 13109-97. Нормы качества электроэнергии в системах электроснабжения общего назначения.

3. Бессонов Л.А. Теоретические основы электротехники. Электрические цепи: Учебник. - 10-е изд. - М.: Гардарики, 1999. - 638 с.: ил.




ФОРМУЛА ИЗОБРЕТЕНИЯ


1. Электрическая система, содержащая два противофазных трехфазных источника электрической энергии, соединенных в звезду или треугольник, одна пара одноименных выводов которых соединена между собой, каждая из двух оставшихся пар выводов источников электрической энергии соединена с одним из четырех проводов линии электропередачи, два трехфазных трансформатора, первичные обмотки которых соединены в звезду или треугольник, одна пара одноименных выводов первичных обмоток которых соединена между собой, а каждая из двух оставшихся пар выводов первичных обмоток трансформаторов соединена с другими концами проводов четырехпроводной линии электропередачи, первичные и вторичные обмотки одного из трансформаторов включены между собой согласно, а второго трансформатора - встречно, одноименные выводы обмоток вторичного напряжения трансформаторов соединены параллельно в трехфазную схему, к которой присоединен трехфазный приемник электрической энергии, отличающаяся тем, что, с целью устранения несимметрии указанной электрической системы, увеличения ее пропускной способности и протяженности, а также повышения качества электроэнергии, одна пара одноименных выводов источников электрической энергии соединена между собой через включенные последовательно с ними индуктивные элементы (реакторы), а выводы опережающих фаз источников электрической энергии соединены с соответствующими проводами четырехпроводной линии электропередачи через включенные последовательно с ними емкостные элементы.

2. Электрическая система по п.1, отличающаяся тем, что выводы опережающих фаз источников электрической энергии соединены с соответствующими проводами четырехпроводной линии электропередачи через включенные последовательно с ними емкостные элементы, а выводы отстающих фаз источников электрической энергии соединены с соответствующими проводами четырехпроводной линии электропередачи через включенные последовательно с ними индуктивные элементы.

3. Электрическая система по п.1, отличающаяся тем, что выводы опережающих фаз источников электрической энергии и выводы отстающих фаз источников электрической энергии соединены с соответствующими проводами четырехпроводной линии электропередачи через включенные последовательно с ними емкостные элементы.

4. Электрическая система по п.1, отличающаяся тем, что одноименные выводы первичных обмоток трансформаторов соединены между собой через включенные последовательно с ними индуктивные элементы (реакторы), а выводы опережающих фаз первичных обмоток трансформаторов соединены с соответствующими проводами четырехпроводной линии электропередачи через включенные последовательно с ними емкостные элементы.

5. Электрическая система по п.1, отличающаяся тем, что выводы опережающих фаз первичных обмоток трансформаторов соединены с соответствующими проводами четырехпроводной линии электропередачи через включенные последовательно с ними емкостные элементы, а выводы отстающих фаз первичных обмоток трансформаторов соединены с соответствующими проводами четырехпроводной линии электропередачи через включенные последовательно с ними индуктивные элементы.

6. Электрическая система по п.1, отличающаяся тем, что выводы опережающих фаз первичных обмоток трансформаторов и выводы отстающих фаз первичных обмоток трансформаторов соединены с соответствующими проводами четырехпроводной линии электропередачи через включенные последовательно с ними емкостные элементы.

7. Электрическая система по любому из пп.1-6, отличающаяся тем, что общая точка соединения одноименных выводов источников электрической энергии заземлена.

8. Электрическая система по любому из пп.1-6, отличающаяся тем, что общая точка соединения одноименных выводов первичных обмоток трансформаторов заземлена.

9. Электрическая система по любому из пп.1-6, отличающаяся тем, что общая точка соединения одноименных выводов источников электрической энергии и общая точка соединения одноименных выводов первичных обмоток трансформаторов заземлены.








ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к ЭЛЕКТРОЭНЕРГЕТИКЕ:
Гелиоэнергетика - Солнечные электростанции, Солнечные батареи. Солнечные коллекторы;
Ветроэнергетика - Ветроэнергетические установки. Ветродвигатели;
Волновые электростанции. Гидроэлектростанции;
Термоэлектрические источники тока;
Химические источники тока;
Нетрадиционные устройства и способы получения, преобразования и передачи ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ;
Устройства и способы экономии и сохранения электроэнергии;
Генераторы постоянного электрического тока. Электрические машины.



Устройства и способы получения, преобразования, передачи, экономии и сохранения электрической энергии




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+электрический -генератор".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "генератор" будут найдены слова "генераторы", "ренераторов" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("генератор!").


Солнечные электростанции. Гелиоэнергетика | Ветроэнергетические установки. Ветродвигатели. Ветрогенераторы | Волновые, геотермальные и гидроэлектростанции | Термоэлектрические источники тока | Химические источники тока. Накопители электроэнергии. Батареи и аккумуляторы | Нетрадиционные устройства и способы получения, преобразования и передачи электрической энергии | Устройства и способы экономии и сохранения электроэнергии | Генераторы постоянного и переменного электрического тока. Электрические машины


Рейтинг@Mail.ru