ИСТОЧНИК ВТОРИЧНОГО ЭЛЕКТРОПИТАНИЯ

ИСТОЧНИК ВТОРИЧНОГО ЭЛЕКТРОПИТАНИЯ


RU (11) 2074492 (13) C1

(51) 6 H02M3/337, G05F1/577, H02H7/12 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 20.11.2007 - прекратил действие 

--------------------------------------------------------------------------------

(21) Заявка: 95102587/07 
(22) Дата подачи заявки: 1995.03.02 
(45) Опубликовано: 1997.02.27 
(56) Список документов, цитированных в отчете о поиске: 1. Эраносян С.А. Сетевые блоки питания с высокочастотными преобразователями. - Л.: Энергоатомиздат, 1991, с. 89. 2. Авторское свидетельство СССР N 1697234, кл. H 02 M 7/527, 1991. 3. Севернс Р., Блум Г. Импульсные преобразователи постоянного напряжения для систем вторичного электропитания. - М.: Энергоатомиздат, 1988. 4. Векслер Г.С., Шилинский В.В. Электропитающие устройства электроакустической и кинотехнической аппаратуры. - Киев, Вища школа, 1986. 
(71) Заявитель(и): Кадель Владимир Ильич; Гарцбейн Валерий Михайлович; Иванов Аркадий Львович 
(72) Автор(ы): Кадель Владимир Ильич; Гарцбейн Валерий Михайлович; Иванов Аркадий Львович 
(73) Патентообладатель(и): Кадель Владимир Ильич; Гарцбейн Валерий Михайлович; Иванов Аркадий Львович 

(54) ИСТОЧНИК ВТОРИЧНОГО ЭЛЕКТРОПИТАНИЯ 

Использование: в устройствах защиты источников вторичного электропитания, например, оснащенных вентиляторами (низковольтными, бесколлекторными), предназначенными для снятия тепла с силовых элементов трансформатора постоянного напряжения и из питаемой источником вторичного электропитания аппаратуры. Достигаемый технический результат заключается в повышении надежности защиты от перегрузок по току. Сущность изобретения: источник вторичного электропитания содержит полумостовой инвертор с независимым возбуждением, силовой трансформатор которого имеет N вторичных обмоток, каждая из которых подключена к выходным клеммам через последовательно соединенные выпрямитель и индуктивно - емкостной фильтр. Управление полумостовым инвертором осуществляется с помощью широтно-импульсного модулятора. Информацию о перегрузке в выходных каналах получают с датчика тока, установленного в цепи нагрузки, а информацию об общем потребляемом токе получают с выхода амплитудного детектора, подключенного к среднему выводу обмотки управляющего трансформатора. Введенные в схему источника питания дополнительные элементы позволяют по сигналам, несущим информацию о токовых перегрузках, сформировать сигналы защиты, обеспечивающие изменения (уменьшение) длительности и частоты повторения управляющих импульсов, полученных на выходе широтно-импульсного модулятора. 5 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к электротехнике и может быть использовано в устройствах защиты источников вторичного электропитания, например, оснащенных вентиляторами (низковольтными, бесколлекторными), предназначенными для снятия тепла с силовых элементов трансформатора постоянного напряжения и из питаемой источником вторичного электропитания аппаратуры.

Известен источник вторичного электропитания (ИВЭП) с защитой от перегрузок по току, содержащий транзисторный преобразователь, силовые транзисторы которого управляются импульсами, сформированными схемой управления по закону широтно-импульсной модуляции, реализуемым широтно-импульсным модулятором. В состав источника вторичного электропитания входит блок защиты по току, все узлы которого питаются от вспомогательного источника питания. Блок защиты по току включает параметрический стабилизатор напряжения, источник опорного напряжения, операционный усилитель, выполняющий роль порогового элемента. На один вход усилителя поступает напряжение от датчика тока, которое суммировано с постоянным стабилизированным напряжением от делителя. Другой вход усилителя соединен с источником опорного напряжения. Выход порогового элемента соединен с импульсным усилителем на транзисторе, в коллекторе которого установлен импульсный трансформаторе, в коллекторе которого установлен импульсный трансформатор, а в цепи эмиттера имеется источник запирающего напряжения, база транзистора подключена к цепи положительной обратной связи. Выходные обмотки импульсного трансформатора соединены с входами широтно-импульсного модулятора и устройством включения [1]

К недостаткам известного устройства следует отнести необходимость автономного узла питания токовой защиты, поскольку в противном случае при наличии токовой перегрузки будут происходить релаксационные включения источника вторичного электропитания. При пропадании выходного напряжения источник будет выключаться, затем повторно запускаться, при срабатывании защиты выключаться и т. д.

Наиболее близким к предлагаемому является источник питания с защитой от перегрузок по току и короткого замыкания, содержащий преобразователь напряжения, через силовой трансформатор подключенный к двум выпрямителям, выходами подключенными соответственно к одному и другому LC-фильтрам, управляющий трансформатор, первичная обмотка которого, имеющая средний вывод, началом и концом подключена к модулятору, входом подключенному соответственно через первый диод и усилитель обратной связи по току и второй диод и усилитель обратной связи по напряжению к выходу одного LC-фильтра и выходу согласующего блока, вторичные обмотки управляющего трансформатора подключены к формирователю выходных импульсов, выход которого подключен к входу преобразователя напряжения, согласующий резистор, подключенный параллельно входу согласующего блока 1 и выводам конденсатора амплитудного детектора и подключен к аноду диода амплитудного детектора, при этом дополнительная обмотка включена последовательно с первичной обмоткой силового трансформатора, а датчик тока одним выводом подключен к катоду диода амплитудного детектора и среднему выводу первичной обмотки управляющего трансформатора, а другим выводом датчик тока подключен к выводу конденсатора амплитудного детектора, не связанного с диодом [2]

В известном решении перевод источника в режиме защиты в режим стабилизации по току реализуется только за счет уменьшения длительности импульсов на входе преобразователя. Данное обстоятельство не позволяет обеспечить выполнения требований к ИВЭП, например, персональных компьютеров, для которых в режиме защиты необходимо не только ограничение выходной мощности, но и значительное (до 10 раз) снижение выходных напряжений в широком диапазоне нагрузок.

Кроме того, реальные времена рассасывания при включении силовых ключей не позволяют получить требуемого снижения коэффициента выполнения без снижения частоты преобразования.

Если предположить, что в известном техническом решении удалось достигнуть требуемого снижения выходных напряжений; то ИВЭП в режиме защиты переходит в режим релаксаций (из-за отсутствия питания с выхода ИВЭП для схемы управления), либо необходимо введение дополнительного источника питания с входа ИВЭП.

Кроме того, поскольку от выходного напряжения питается вентилятор (вентилятор не должен создавать акустических шумов более 38 дБ требование европейских стандартов и поэтому он выполняется бесколлекторным и низковольтным), то мощность, рассеиваемая на силовых элементах преобразователя без обдува, должна быть снижена в 100 400 раз, наличие вентилятора определяется не ИВЭП, а питаемой им аппаратурой, так как КПД ИВЭП 70% то выделяемое тепло в ИВЭП составляет 30% а выделяемое тепло в питаемой аппаратуре 70% Габариты ИВЭП не позволяют использовать радиаторы для силовых ключей преобразователя, доставочные для рассеивания тепла за счет конвекции (без обдува).

Достигаемый технический результат заключается в устранении указанного недостатка и выражается в повышении надежности ИВЭП в режимах защиты от перегрузок по току и повышении надежности питаемой аппаратуры, так как при выходе из строя схемы защиты ИВЭП выходит их строя и питаемая им аппаратура.

Технический результат достигается тем, что в источник вторичного электропитания, содержащий полумостовой инвертор с независимым возбуждением, вход которого подключен к источнику постоянного напряжения, а каждая из N вторичных обмоток силового трансформатора подключена к соответствующим выходным клеммам устройства через последовательно соединенные выпрямитель и индуктивно емкостной фильтр, первичная обмотка управляющего трансформатора, имеющая средний вывод, подключена к двум последовательно соединенным ключам, управляющие входы которых объединены и соединены с выходом широтно-импульсного модулятора, к входу модулирующего сигнала которого через соответственно первый и второй диоды подключены выходы первого и второго операционных усилителей, а к частотно задающему входу выход генератора пилообразного напряжения, входы которого соединены с частотно-задающей RC-цепью, с неинвертирующим входом второго операционного усилителя соединен средний вывод первого делителя напряжения, подключенного к одним из выходных клемм устройства, инвертирующий вход второго операционного усилителя соединен с выходом источника опорного напряжения, который состоит из последовательно соединенных выпрямителя, емкостного фильтра и непрерывного стабилизатора напряжения, причем вход выпрямителя подключен к N+1 выходной обмотке силового трансформатора, средний вывод обмотки управляющего трансформатора, средний вывод обмотки управляющего трансформатора подключен к входу амплитудного детектора, выход которого соединен с первым выводом второго делителя напряжения, второй вывод которого соединен с общей шиной, введены пять транзисторов, датчик тока, третий делитель напряжения, четвертый делитель напряжения, использованный в качестве резистивного элемента частотно задающей RC-цепи генератора пилообразного напряжения, третий диод и пять резисторов, при этом датчик тока включен в цепи нагрузки, в цепи нагрузки, к первому выводу датчика тока подключен эмиттер первого транзистора, а к второму выводу датчика тока через первый резистор подключена база первого транзистора, коллектор которого через второй резистор подключен к коллектору второго транзистора, катоду третьего диода и базе третьего транзистора, эмиттер которого соединен с базой четвертого транзистора и общим выводом ключей, эмиттеры второго и четвертого транзисторов, первый вывод третьего делителя напряжения и анод третьего диода соединены с общей шиной, инвертирующий вход первого операционного усилителя подключен к общей точке соединения первого и второго диодов, а к инвертирующему входу первого операционного усилителя подключен коллектор третьего транзистора и второй вывод третьего делителя напряжения, средний вывод которого соединен с базой второго транзистора, средний вывод второго делителя напряжения через третий резистор соединен с выходом емкостного фильтра, а с базой пятого транзистора - непосредственно, коллектор пятого транзистора через четвертый резистор с базой третьего транзистора, а эмиттер пятого транзистора соединен непосредственно с выходом источника опорного напряжения, к которому подключена шина питания генератора пилообразного напряжения, а с коллектором третьего транзистора - через пятый резистор, коллектор четвертого транзистора подключен к среднему выводу четвертого делителя напряжения, первый вывод которого соединен с входом генератора пилообразного напряжения, шина операционных усилителей и широтно-импульсного модулятора подключена к выходу емкостного фильтра.

На фиг. 1 представлена схема источника вторичного электропитания.

Источник вторичного электропитания содержит полумостовой инвертор 1 с независимым возбуждением, силовой трансформатор 2, вторичные обмотки которого подключены к выпрямителям 3, соединенным с индуктивно емкостными фильтрами 4, управляющий трансформатор 5, первичная обмотка которого подключена к последовательно соединенным ключам 6 и 7, управляющие входы которых соединены с выходом широтно-импульсного модулятора 8, первый и второй операционные усилители 9, 10 подключены соответственно через первый и второй диоды 11 и 12 к входу модулирующего сигнала широтно-импульсного модулятора (ШИМ) 8, в состав которого входит генератора 13 пилообразного напряжения, выходом подключенный к частотно-задающему входу ШИМ 8, входы генератора 13 соединены с частотно-задающей RC-цепью, к выходу емкостного фильтра 14, соединенного с выпрямителем 3, подключен непрерывный стабилизатор 15 напряжения, датчик 16 тока, включенный в цепи нагрузки, амплитудный детектор 17, подключенный к среднему выводу первичной обмотки управляющего трансформатора 5, первый, второй, третий, четвертый и пятый транзисторы 180 19, 20, 21 и 22, первый, второй, третий, четвертый и пятый резисторы 23, 24, 25, 26 и 27, первый делитель 28 напряжения, второй делитель 29 напряжения, третий делитель напряжения 30, четвертый делитель напряжения 31, использованный в качестве резистивного элемента частотно-задающей RC-цепи генератора 13 пилообразного напряжения, к первому выводу датчика 16 тока подключен эмиттер первого транзистора 18, а к второму выводу датчика 16 тока через первый резистор 23 подключена база первого транзистора 18, коллектор которого через второй резистор 24 подключен к коллектору второго транзистора 19 и базе третьего транзистора 20, эмиттер которого соединен с базой четвертого транзистора 21 и общим выводом ключей 6 и 7, эмиттеры второго и четвертого транзистора 19, 21, первый вывод третьего делителя 30 напряжения и анод третьего диода 32 соединены с общей шиной, инвертирующий вход первого операционного усилителя 9 подключен к общей точке соединения первого и второго диодов 11, 12, а к неинвертирующему входу первого операционного усилителя 9 подключены коллектор третьего транзистора 20 и второй вывод третьего делителя 30 напряжения, средний вывод которого соединен с базой второго транзистора 19, выход амплитудного детектора 17 подключен к первому выводу второго делителя напряжения 29, второй вывод которого соединен с общей шиной, а средний вывод через третий резистор 25 соединен с выходом емкостного фильтра 14, а с базой транзистора 22 непосредственно, коллектор пятого транзистора 22 через четвертый резистор 26 соединен с базой третьего транзистора 20 и катодом третьего диода 32, а эмиттер пятого транзистора 22 соединен непосредственно с выходом непрерывного стабилизатора 15 напряжения, к которому подключена шина питания генератора 13 пилообразного напряжения, а с коллектором третьего транзистора 20 через пятый резистор 27, коллектор четвертого транзистора 21 подключен к среднему выводу четвертого делителя 31, напряжения, первый вывод которого соединен с входом генератора 13 пилообразного напряжения, а второй - с общей шиной, шина питания операционных усилителей 9, 10 и широтно-импульсного модулятора 8 подключена к выходу емкостного фильтра 14.

На фиг. 2 и 3 приведены эпюры входных и выходных сигналов широтно-импульсного модулятора соответственно в рабочем режиме и в режиме защиты.

Uгпн выходное напряжение генератора 13 пилообразного напряжения,

Uшим выходное напряжение широтно-импульсного модулятора 8,

U1 и U2 напряжения на модулирующем входе широтно-импульсного модулятора 8,

На фиг. 4 и 5 приведены эпюры выходных напряжений ИВЭП и напряжения питания широтно-импульсного модулятора, а также его элементов управления соответственно в рабочем режиме и в режиме защиты.

Uвых выходное напряжение ИВЭП,

Uп напряжение на выходе емкостного фильтра 14.

Источник вторичного электропитания работает следующим образом.

Входное постоянное напряжение U поступает на полумостовой инвертор 1 с независимым возбуждением и преобразуется в модулируемые по длительности импульсы, которые с выходных обмоток силового трансформатора 2, обеспечивающего гальваническую развязку цепей нагрузки от входного напряжения, поступают через соответствующие выпрямители 3 на входы соответствующих усредняющих Г-образных индуктивно-емкостных фильтров 4.

Управление полумостовым инвертором 1 обеспечивается с помощью широтно-импульсного модулятора 8 через управляющий трансформатор 5. Выходные напряжения Uвых в каждом канале определяются коэффициентом заполнения модулируемого по длительности импульсного напряжения с выходных обмоток силового трансформатора 2. Напряжение с выпрямителя 3, подключенного к N+1 обмотке силового трансформатора 2, поступает на емкостной фильтр 14, выходное напряжение которого определяется амплитудой модулированного по длительности импульсного напряжения на N+1 выходной обмотке силового трансформатора 2, т. е. входным постоянным напряжением U. Полученное на выходе емкостного фильтра 14 напряжение Un используется для питания входящих в схему управления широтно-импульсного модулятора 8 и операционных усилителей 9 и 10. Напряжение Un также используется для получения опорного напряжения Uоп с помощью непрерывного стабилизатора 15 напряжения.

Рассмотрим работу ИВЭП в двух режимах: рабочем режиме и режиме защиты (при наличии токовой перегрузки).

Информация об общем потребляемом токе ИВЭП содержится в амплитуде импульсов напряжения управляющего трансформатора 5, сигнал с которого с помощью амплитудного детектора 17 преобразуется в постоянное напряжение, часть которого, определяемая вторым делителем 29 напряжения, сравнивается с опорным напряжением Uоп с помощью пятого транзистора 22. Для уменьшения зависимости сравниваемого напряжения от изменения U к нему добавляется с помощью третьего резистора 25 сигнал от Uп, определяемый входным напряжением U. Таким образом, регулировкой одного из плеч второго делителя 29 напряжения осуществляется установка предельно допустимой входной мощности ИВЭП для заданного диапазона U, после превышения которой насыщенный пятый транзистор 22 запирается.

При токовой перегрузке в выходных каналах (со значительным выходным сопротивлением), не вызывающей срабатывание пятого транзистора 22, сигнал с датчика 16 тока через первый резистор 23 поступает на базу первого транзистора 18, который открывается при достижении заданного значения, подавая отрицательное напряжение через второй резистора 24. Диод 32 защищает второй и третий транзисторы 19 и 20 от обратного напряжения.

Следует отметить, что проводимость транзисторов 18, 19 20, 21, 22 и полярность подключения диода 32, определяются полярностью выходного канала со значительным выходным сопротивлением Uвых и при необходимости могут быть изменены на обратные.

Таким образом, в рабочем режиме транзистор 22 насыщен, а первый транзистор 18 заперт. Насыщенный пятый транзистор 22 через четвертый резистор 26 обеспечивает насыщение третьего и четвертого транзисторов 20, 21, а с помощью пятого резистора 27 и третьего делителя 30 напряжения обеспечивается запирание второго транзистора 19. При этом соединенный с общей шиной резистор четвертого делителя 31 напряжения закорочен четвертым транзистором 21 и генератор 13 пилообразного напряжения со стабилизированной амплитудой, определяемой Uоп, обеспечивает максимальную крутизну пилообразного напряжения. Напряжение на третьем делителе 30 напряжения в рабочем режиме минимально, т. е. U1<U. Здесь U1 напряжение на третьем делителе 30 напряжения, передаваемое повторителем на первом операционном усилителе 9, а U2 выходное напряжение усилителя рассогласования сигналов первого делителя 28 напряжения и Uоп, построенного на втором операционном усилителе 10. Таким образом, на выходе широтно импульсного модулятора 8 появляются модулированные по длительности импульсы, которые управляя ключами 6 и 7, а следовательно, и силовыми транзисторами полумостового инвертора 1, обеспечивают стабилизацию выходных напряжений ИВЭП.

При появлении токовой перегрузки (запирание пятого транзистора 22 или насыщение первого транзистора 18) третий транзистор 20 запирается, обеспечивая лавинообразное насыщение второго транзистора 19, поддерживающее надежное запирание третьего транзистора 20 после пропадания токовой перегрузки.

Четвертый транзистор 21 в режиме защиты насыщается, закорачивая резистор резистивного элемента 30 только во время появления импульсов на базе четвертого транзистора 21, которые поступают с общего вывода ключей 6 и 7. В промежутках между импульсами четвертый транзистор 21 запирается, обеспечивая тем самым увеличение сопротивления резистивного элемента частотно задающей RC-цепи генератора 13 пилообразного напряжения и, как следствие, значительное уменьшение крутизны пилообразного напряжения. Это позволяет в режиме защиты в десятки раз снизить коэффициент заполнения импульсов с выходных обмоток силового трансформатора 2, что приводит к резкому снижению выходных напряжений ИВЭП до допустимых для режима защиты значений. Например, для ИВЭП персонального компьютера необходимо уменьшить выходные напряжения в 10.20 раз, а мощность в 100.400 раз. Запирание четвертого транзистора 21 только в промежутке между импульсами уменьшает возможную несимметрию силовых ключей полумостового инвертора 1 в динамике перехода от рабочего режима к режиму защиты, т. е. уменьшает подмагничивание трансформатора 2,

Напряжение на третьем делителе 30 напряжения в режиме защиты максимально, т. е. U1>U2, так как U2 минимально при снижении выходных напряжений. Таким образом, в режиме защиты на выходе широтно импульсного модулятора 8 будут постоянные, но уменьшенные по длительности импульсы, частота повторения которых также резко уменьшена, поскольку длительность импульса определяется напряжением на третьем делителе 30 напряжения, и во время действия которых крутизна пилообразного напряжения генератора 13 максимальна, а время между импульсами ШИМ 8 во много раз увеличено, так как крутизна пилообразного напряжения минимальна за счет увеличения сопротивления резистивного элемента. ИВЭП удерживается в режиме защиты и при пропадании токовой нагрузки, так как второй транзистор 19 насыщен.

В режиме защиты выходное напряжение ИВЭП резко снижается, однако напряжение на выходе емкостного фильтра 14, с которым соединена шина питания схемы управления (широтно-импульсного модулятора 8 и других операционных усилителей 9 и 10), практически не меняется по сравнению с рабочим режимом, так как постоянная времени разряда емкостного фильтра 14 выбрана значительно большей, чем период повторения импульсов, что позволяет поддерживать режим защиты до отключения ИВЭП и устранения причин токовой перегрузки. При отключении ИВЭП от входного напряжения режим защиты устраняется при отсутствии Uп, причем полное пропадание напряжения U при этом не требуется.

Необходимость резкого уменьшения мощности в режиме защиты обусловлена тем, что ИВЭП этого класса оснащены вентиляторами (низковольтными, бесколлекторными из-за требований по акустическим шумам <38 дБ) для снятия тепла с силовых элементов полумостового инвертора 1 с независимым возбуждением и из питаемой ИВЭП аппаратуры, поэтому вентилятор подключен к выходу ИВЭП (Uвых.1). В режиме защиты выходное напряжение (Uвых отсутствует и вентилятор не работает.

Используемые в источнике питания полумостовой инвертор с независимым возбуждением, усредняющий Г-образный индуктивно емкостной фильтр (ИЕФ), а также емкостной фильтр (ЕФ) реализованы по известным схемам, описанным, например, в источниках информации [3] на с. 87 и [4] с. 121 и 181. Элементы, входящие в схему управления полумостовым инвертором, выделенную на чертеже штрихпунктирной линией, содержатся, например, в микросхеме 1114ЕУ4 КО. 347.300 02ТУ. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



Источник вторичного электропитания, содержащий полумостовой инвертор с независимым возбуждением, вход которого подключен к источнику постоянного напряжения, а каждая из N вторичных обмоток силового трансформатора подключена к соответствующим выходным клеммам устройства через последовательно соединенные выпрямитель и индуктивно-емкостной фильтр, первичная обмотка управляющего трансформатора, имеющая средний вывод, подключена к двум последовательно соединенным ключам, управляющие входы которых объединены и соединены с выходом широтно-импульсного модулятора, к входу модулирующего сигнала которого через соответственно первый и второй диоды подключены выходы первого и второго операционных усилителей, а к частотно-задающему входу - выход генератора пилообразного напряжения, входы которого соединены с частотно-задающей RC-цепью, с неинвертирующим входом второго операционного усилителя соединен средний вывод первого делителя напряжения, подключенного к одним из выходных клемм устройства, инвертирующий вход второго операционного усилителя соединен с выходом источника опорного напряжения, который состоит из последовательно соединенных выпрямителя, емкостного фильтра и непрерывного стабилизатора напряжения, причем вход выпрямителя подключен к (N + 1)-й выходной обмотке силового трансформатора, средний вывод обмотки управляющего трансформатора подключен к входу амплитудного детектора, выход которого соединен с первым выводом второго делителя напряжения, второй вывод которого соединен с общей шиной, отличающийся тем, что в него введены пять транзисторов, датчик тока, третий делитель напряжения, четвертый делитель напряжения, использованный в качестве резистивного элемента частотно-задающей RC-цепи генератора пилообразного напряжения, третий диод и пять резисторов, при этом датчик тока включен в цепи нагрузки, к первому выводу датчика тока подключен эмиттер первого транзистора, а к второму выводу датчика тока через первый резистор подключена база первого транзистора, коллектор которого через второй резистор подключен к коллектору второго транзистора, катоду третьего диода и базе третьего транзистора, эмиттер которого соединен с базой четвертого транзистора и общим выводом ключей, эмиттеры второго и четвертого транзисторов, первый вывод третьего делителя напряжения и анод третьего диода соединены с общей шиной, инвертирующий вход первого операционного усилителя подключен к общей точке соединения первого и второго диодов, а к неинвертирующему входу первого операционного усилителя подключен коллектор третьего транзистора и второй вывод третьего делителя напряжения, средний вывод которого соединен с базой второго транзистора, средний вывод второго делителя напряжения через третий резистор соединен с выходом емкостного фильтра, а с базой пятого транзистора непосредственно, коллектор пятого транзистора через четвертый резистор соединен с базой третьего транзистора, а эмиттер пятого транзистора соединен непосредственно с выходом источника опорного напряжения, к которому подключена шина питания генератора пилообразного напряжения, а с коллектором третьего транзистора через пятый резистор, коллектор четвертого транзистора подключен к среднему выводу четвертого делителя напряжения, первый вывод которого соединен с входом генератора пилообразного напряжения, а второй с общей шиной, шина питания операционных усилителей и широтно-импульсного модулятора подключена к выходу емкостного фильтра.




ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к ЭЛЕКТРОЭНЕРГЕТИКЕ:
Гелиоэнергетика - Солнечные электростанции, Солнечные батареи. Солнечные коллекторы;
Ветроэнергетика - Ветроэнергетические установки. Ветродвигатели;
Волновые электростанции. Гидроэлектростанции;
Термоэлектрические источники тока;
Химические источники тока;
Нетрадиционные устройства и способы получения, преобразования и передачи ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ;
Устройства и способы экономии и сохранения электроэнергии;
Генераторы постоянного электрического тока. Электрические машины.



Устройства и способы получения, преобразования, передачи, экономии и сохранения электрической энергии




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+электрический -генератор".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "генератор" будут найдены слова "генераторы", "ренераторов" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("генератор!").


Солнечные электростанции. Гелиоэнергетика | Ветроэнергетические установки. Ветродвигатели. Ветрогенераторы | Волновые, геотермальные и гидроэлектростанции | Термоэлектрические источники тока | Химические источники тока. Накопители электроэнергии. Батареи и аккумуляторы | Нетрадиционные устройства и способы получения, преобразования и передачи электрической энергии | Устройства и способы экономии и сохранения электроэнергии | Генераторы постоянного и переменного электрического тока. Электрические машины


Рейтинг@Mail.ru