ПРЕОБРАЗОВАТЕЛЬ ТРЕХФАЗНОГО ПЕРЕМЕННОГО НАПРЯЖЕНИЯ В ПОСТОЯННОЕ И СПОСОБ УПРАВЛЕНИЯ ИМ

ПРЕОБРАЗОВАТЕЛЬ ТРЕХФАЗНОГО ПЕРЕМЕННОГО НАПРЯЖЕНИЯ В ПОСТОЯННОЕ И СПОСОБ УПРАВЛЕНИЯ ИМ


RU (11) 2234183 (13) C1

(51) 7 H02M7/12 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 11.01.2009 - прекратил действие 

--------------------------------------------------------------------------------

(21) Заявка: 2002133716/09 
(22) Дата подачи заявки: 2002.12.15 
(24) Дата начала отсчета срока действия патента: 2002.12.15 
(45) Опубликовано: 2004.08.10 
(56) Список документов, цитированных в отчете о поиске: SU 816101 A1, 05.07.1968. SU 229681 A1, 27.03.1969. US 3737755 А, 05.06.1973. 
(72) Автор(ы): Игольников Ю.С. (RU) 
(73) Патентообладатель(и): Мордовский государственный университет им. Н.П. Огарёва (RU) 
Адрес для переписки: 430000, г.Саранск, ул. Большевистская, 68, Мордовский государственный университет им. Н.П. Огарёва, отдел патентов и стандартов 

(54) ПРЕОБРАЗОВАТЕЛЬ ТРЕХФАЗНОГО ПЕРЕМЕННОГО НАПРЯЖЕНИЯ В ПОСТОЯННОЕ И СПОСОБ УПРАВЛЕНИЯ ИМ 

Изобретение относится к области преобразовательной техники и может найти применение для питания потребителей постоянного тока. Технический результат заключается в достижении параллельной работы двух фаз анодной цепи во внекоммутационный интервал времени и улучшении режима работы вентильных элементов за счет снижения величины анодного тока до половины тока нагрузки (1/2 Id), увеличения длительности его протекания до 2/3 периода (240 эл. град.) не достигнутой ни в одной схеме преобразования переменного напряжения в постоянное. Сущность заключается в том, что преобразователь состоит из трансформатора с вторичными фазными обмотками, соединенными в звезду. Каждая фазная обмотка трансформатора соединена со средней точкой одной из обмоток уравнительного реактора, выполненного в виде трех одинаковых обмоток, расположенных на одном магнитопроводе. Выводы уравнительного реактора соединены с одноименными электродами, например анодами соответственно управляемых вентильных элементов, например тиристоров. Катоды тиристоров соединены между собой и образуют один из выходных зажимов преобразователя. Между этим зажимом и вторым - точкой “о” включена нагрузка состоящая, например из резистора и индуктивности. 2 с.п. ф-лы, 2 ил.




ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к области преобразовательной техники и может найти применение для питания потребителей постоянного тока.

Известны преобразователи трехфазного переменного напряжения в постоянное, содержащие трехфазный трансформатор, вторичные обмотки которого соединены в m-фазную звезду и соединены с вентильными элементами по m-фазной нулевой схеме (Каганов И.Л. Электронные и ионные преобразователи, ч.III - М.: Госэнергоиздат, 1956, с.100).

Однако в них отсутствует распределение тока по параллельным анодным цепям, включающим обмотку трансформатора. Только при m=6 известна одновременная параллельная работа двух фаз вторичной обмотки преобразователя за счет введения уравнительного реактора, включенного между нулевыми точками двух звезд шестифазной системы (Каганов И.Л. Электронные и ионные преобразователи, ч.III - М.: Госэнергоиздат, 1956, с.132).

Известный преобразователь трехфазного переменного напряжения в постоянное, выполненный по трехфазной схеме с нулевым выводом (прототип), является частным случаем m-фазных схем (m=3). Он содержит вторичную обмотку, соединенную в звезду, и вентильные элементы, подключенные к вторичной обмотке и нагрузке по нулевой схеме (Каганов И.Л. Электронные и ионные преобразователи, ч.III - М.: Госэнергоиздат, 1956, с.91).

Недостатком этого преобразователя является то, что ввиду минимального числа фаз вторичной обмотки он не обеспечивает параллельную работу анодных цепей, и длительность протекания анодного тока равна только 1/3 периода.

Технический результат заключается в достижении параллельной работы двух фаз анодной цепи во внекоммутационный интервал времени и улучшении режима работы вентильных элементов за счет снижения величины анодного тока до половины тока нагрузки (1/2 Id), увеличения длительности его протекания до 2/3 периода (240 эл. град.), не достигнутой ни в одной схеме преобразования переменного напряжения в постоянное.

Сущность заключается в том, что преобразователь трехфазного переменного напряжения в постоянное, содержащий трехфазный трансформатор, вторичные фазные обмотки которого соединены в звезду, и вентильные элементы, снабжен трехобмоточным уравнительным реактором, выполненным в виде трех одинаковых обмоток, расположенных на одном магнитопроводе. Каждая вторичная фазная обмотка трехфазного трансформатора соединена со средней точкой соответствующей обмотки уравнительного реактора, каждая из обмоток которого своими выводами подключена к одноименным электродам соответствующих управляемых вентильных элементов, другие электроды которых соединены с одноименными электродами всех остальных управляемых вентильных элементов, образующими один их выходных зажимов. Второй выходной зажим является нулевой точкой.

В способе управления преобразователем трехфазного напряжения в постоянное путем подачи управляющих сигналов на управляемые вентильные элементы со сдвигом на 1/3 периода, управляющие сигналы, например импульсы, при отсутствии регулирования, подают при отрицательных мгновенных значениях фазных э.д.с., причем на каждый из управляемых вентильных элементов сигнал управления подают один раз за два периода.

На фиг.1 показана схема преобразователя; на фиг.2а-е - диаграммы напряжений, токов и управляющих сигналов, характеризующие работу схемы.

Преобразователь (фиг.1) состоит из трансформатора 1 (первичная обмотка не показана) с вторичными фазными обмотками ао, во, со, соединенными в звезду. Каждая фазная обмотка трансформатора 1 соединена со средней точкой одной из обмоток уравнительного реактора 2, выполненного в виде трех одинаковых обмоток, расположенных на одном магнитопроводе. Так обмотка ао трансформатора 1, зажимом “а” соединена со средней точкой о1 обмотки a1x1 уравнительного реактора 2, обмотка “во” - с зажимом о2 обмотки а2х2, уравнительного реактора, а средняя точка о3 обмотки a3x3 реактора соединена с зажимом “с” обмотки “со” трансформатора. Выводы a1х1 уравнительного реактора 2 соединены с одноименными электродами, например анодами соответственно управляемых вентильных элементов, например тиристоров 3 и 4. Аналогично 2x2 - с анодами тиристоров 5, 6 и a3x3 - с анодами тиристоров 7, 8. Катоды тиристоров 3-8 соединены между собой и образуют один из выходных зажимов преобразователя. Между этим зажимом и вторым - точкой о включена нагрузка 9, состоящая, например из резистора R и индуктивности L.

Работа преобразователя происходит в соответствии с диаграммами фиг.2 а-г и управляющими сигналами, например импульсами фиг.2 д, е. Например, начиная с момента времени t=0, ток нагрузки Id проводит продолжающий работать управляемый вентильный элемент 8 и вновь вступающий в работу после подачи сигнала управления управляемый вентильный элемент 3 фиг.2 а, в-д. Это обусловлено тем, что напряжение половины обмотки o3x3 уравнительного реактора 2 вычитается из э.д.с. ec вторичной фазной обмотки ос, а э.д.с. половины обмотки а1о1 реактора добавляется к э.д.с. ea (фиг.2 а, б). С момента времени t1 э.д.с. еc становится меньше э.д.с. eв фазы ов, и управляемый вентильный элемент 8 заканчивает работу. В этот же момент t1 управляющим сигналом включается вентильный элемент 6 и ток нагрузки Id будет протекать через вентильный элемент 3 и элемент 6 и соответствующие половины обмоток уравнительного реактора 2. В момент времени t2 вентильный элемент 3 заканчивает работу, и управляющим сигналом включается вентильный элемент 7. Начиная с момента 2 к вентильному элементу 3 будет приложено: обратное напряжение на интервале t2-Т+t1, прямое напряжение на интервале (Т+t1, t3) и вновь обратное напряжение на интервале t13-2T (фиг.2 г). Следует отметить, что обратное напряжение обусловлено как линейным напряжением вторичных обмоток трансформатора 1, так и напряжением на обмотках уравнительного реактора 2. Прямое напряжение на элементе 3 обусловлено напряжением всей обмотки a1x1 уравнительного реактора, на интервале работы вентильного элемента 4 после включения его импульсом (фиг.2 е) в момент времени Т, равный периоду. В дальнейшем порядок вступления в работу управляемых вентильных элементов при активно-индуктивной нагрузке и полностью сглаженном токе нагрузки происходит в соответствии с управляющими сигналами y (например, u3 - управляющий сигнал для тиристора 3 и т.д.) фиг.2 д, е и диаграммами фиг.2 а, в. При этом каждый вентильный элемент проводит половину тока нагрузки Id/2 (фиг.2 в, г) при длительности анодного тока ia, равной 2/3 периода (240 эл. град.). Напряжение на нагрузке 9 ud выделено жирной линией на фиг.2 а, где также показано напряжение на всей обмотке a1x1 уравнительного реактора 2 заштрихованными линиями. Закон изменения напряжения up на половине обмотки уравнительного реактора приведен на фиг.2 б. Как следует из фиг.2 б частота напряжения на уравнительном реакторе является полуторакратной по отношению к частоте питающей сети.

Способ управления преобразователя заключается в подаче управляющих импульсов (фиг.2 д, е) со сдвигом на 1/3 периода при отрицательных мгновенных значениях фазных э.д.с. в точку естественной коммутации, если не требуется регулирования. Причем на каждый из тиристоров импульс подается один раз за два периода. Так, например, в момент времени t1 (фиг.2 a), соответствующий точке естественной коммутации фаз “с” и “в” импульс u6 подается на тиристор 6 только один раз за два периода.

Таким образом, преобразователь обеспечивает параллельную работу двух фазных обмоток трансформатора и двух вентильных элементов в трехфазной нулевой схеме при протекании по ним тока, равного половине тока нагрузки Id/2 и длительности 2/3 периода (240 эл. град.), что не достигалось ни в одной схеме выпрямления. Улучшение коэффициента формы тока вентильного элемента за счет увеличения длительности протекания его до 240 эл. град., параллельная одновременная работа двух обмоток и вентильных элементов создают положительный эффект и расширяют возможности применения одной из самых простых схем преобразования трехфазного переменного напряжения в постоянное - трехфазной нулевой схеме при предложенном способе управления.

Производилось моделирование устройства фиг.1 в программе Electronics Worckbench. Моделирование подтвердило работоспособность устройства в соответствии с диаграммами фиг.2, а-е. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



1. Преобразователь трехфазного переменного напряжения в постоянное, содержащий трехфазный трансформатор, вторичные фазные обмотки которого соединены в звезду, и вентильные элементы, отличающийся тем, что он снабжен трехобмоточным уравнительным реактором, выполненным в виде трех одинаковых обмоток, расположенных на одном магнитопроводе, каждая вторичная фазная обмотка трехфазного трансформатора соединена со средней точкой соответствующей обмотки уравнительного реактора, каждая из обмоток которого своими выводами подключена к одноименным электродам соответствующих управляемых вентильных элементов, другие электроды которых соединены с одноименными электродами всех остальных управляемых вентильных элементов, образующими один из выходных зажимов, при этом второй выходной зажим является нулевой точкой.

2. Способ управления преобразователем трехфазного переменного напряжения в постоянное путем подачи управляющих сигналов на управляемые вентильные элементы со сдвигом на 1/3 периода, отличающийся тем, что управляющие сигналы, например импульсы, при отсутствии регулирования подают при отрицательных мгновенных значениях фазных эдс, причем на каждый из управляемых вентильных элементов сигнал управления подают один раз за два периода.




ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к ЭЛЕКТРОЭНЕРГЕТИКЕ:
Гелиоэнергетика - Солнечные электростанции, Солнечные батареи. Солнечные коллекторы;
Ветроэнергетика - Ветроэнергетические установки. Ветродвигатели;
Волновые электростанции. Гидроэлектростанции;
Термоэлектрические источники тока;
Химические источники тока;
Нетрадиционные устройства и способы получения, преобразования и передачи ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ;
Устройства и способы экономии и сохранения электроэнергии;
Генераторы постоянного электрического тока. Электрические машины.



Устройства и способы получения, преобразования, передачи, экономии и сохранения электрической энергии




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+электрический -генератор".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "генератор" будут найдены слова "генераторы", "ренераторов" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("генератор!").


Солнечные электростанции. Гелиоэнергетика | Ветроэнергетические установки. Ветродвигатели. Ветрогенераторы | Волновые, геотермальные и гидроэлектростанции | Термоэлектрические источники тока | Химические источники тока. Накопители электроэнергии. Батареи и аккумуляторы | Нетрадиционные устройства и способы получения, преобразования и передачи электрической энергии | Устройства и способы экономии и сохранения электроэнергии | Генераторы постоянного и переменного электрического тока. Электрические машины


Рейтинг@Mail.ru