АВТОНОМНЫЙ ИНВЕРТОР

АВТОНОМНЫЙ ИНВЕРТОР


RU (11) 2038684 (13) C1

(51) 6 H02M7/521 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 11.01.2009 - прекратил действие 

--------------------------------------------------------------------------------

(21) Заявка: 93018215/07 
(22) Дата подачи заявки: 1993.04.08 
(45) Опубликовано: 1995.06.27 
(56) Список документов, цитированных в отчете о поиске: 1. Справочник по преобразовательной технике. Под ред. И.М.Чиженко. Киев: Техника. 1978. 2. Кулик В.Д. и др. Тиристорные инверторы резонансного типа с широтным регулированием напряжения. Киев: Наукова думка, 1990, с.20, рис.4б. 
(71) Заявитель(и): Дизендорф Эдуард Анатольевич 
(72) Автор(ы): Дизендорф Эдуард Анатольевич 
(73) Патентообладатель(и): Дизендорф Эдуард Анатольевич 

(54) АВТОНОМНЫЙ ИНВЕРТОР 

Использование: в преобразовательной технике, а именно во вторичных источниках питания переменного тока. Сущность изобретения: устройство содержит мост, в плечи которого включены дроссели насыщения, последовательно с дросселями насыщения в смежные плечи моста включены датчики тока, выходы которых соединены соответственно с первым и вторым входами блока управления входным электронным ключом. Система управления входным электронным ключом обеспечивает соответствие между степенью перемагничивания дросселей насыщения обратным током и моментом включения входного ключа, выключает его в области нулевых токов после прохождания импульса прямого тока. 2 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к электротехнике, а именно к преобразовательной технике устройствам для преобразования постоянного напряжения в переменное, может применяться во вторичных источниках питания переменного тока.

Известны инверторы, выполняющие указанные функции, в качестве ключевых элементов использующие тиристоры [1] Тиристоры в инверторах подвергаются воздействию тепла от тока, протекающего по ним, и воздействию перенапряжений, возникающих при работе инвертора, совместное воздействие тепла и перенапряжений приводит к пробою тиристоров, т.е. к ненадежной работе инвертора, поэтому тиристоры надо охлаждать, что приводит к увеличению массы и габаритов инвертора и к другим сложностям, если охлаждение принудительное, а ограничение тиристоров по напряжению ведет к применению различных схем их последовательного соединения, что также увеличивает массу, габариты, стоимость инвертора и усложняет силовую цепь.

Наиболее близок по технической сути известный мостовой инвертор с входным электронным ключом, мост которого содержит четыре тиристора с присоединенными к ним обратными диодами, в диагональ переменного тока моста включены последовательно соединенные конденсатор и нагрузка, а в диагональ постоянного тока источник питания с присоединенным к нему входным электронным ключом [2]

Целью изобретения является увеличение надежности, расширение функциональных возможностей, упрощение силовой цепи.

Цель достигается тем, что в известном мостовом инверторе с электронным ключом на входе полупроводниковые элементы моста заменены нелинейными индуктивностями первым, вторым, третьим и четвертым дросселями насыщения, последовательно с дросселями насыщения в смежные плечи моста включены первый и второй датчики тока, выходы которых соединены соответственно с первым и вторым входами блока управления входным ключом.

Дроссели насыщения можно изготовить высоковольтными, малогабаритными, с небольшим омическим сопротивлением, дешевыми, поэтому замена полупроводниковых элементов моста инвертора дросселями насыщения ведет к увеличению надежности и расширению функциональных возможностей, например, можно резко увеличить рабочую частоту инвертора, подобрав соответствующие дроссели насыщения.

Изобретательский уровень данного технического решения состоит в том, что, во-первых, полупроводниковые элементы моста инвертора заменены дросселями насыщения, во-вторых, организован такой режим включения и выключения входного электронного ключа, при котором управляемо и частично подавлена способность дросселей насыщения переключать ток в обратном направлении, зато в полной мере используется способность работать в режиме "Включено-выключено".

Известно, что нелинейные индуктивности дроссели насыщения можно применять в качестве переключающих дросселей, это свойство основано на нелинейности намагничивания сердечника дросселя. Пока сердечник не насыщен, напряженность Н магнитного поля в нем не превышает некоторой величины Нн, зависящей от свойств магнитного материала. В силу закона Ампера IN Hl ограничен и ток I, протекающий по обмотке дросселя (где N число витков; l длина сердечника). Магнитное состояние сердечника при этом определяется согласно закону Фарадея Ф (I/N) Edt (1), где Ф магнитный поток через сердечник; Е напряжение, приложенное к обмотке дросселя. Так как Ф B S (2), где В индукция сердечника; S площадь поперечного сечения сердечника, то (1) представим в виде В (I/NS) Edt (3), если напряжение Е постоянное, то (3) упрощается В Е t/NS (4).

Поскольку в ненасыщенном состоянии сердечника ток I по обмотке мал и возрастает линейно с течением времени, то так же малы и линейно возрастают магнитное поле Н и индукция В в сердечнике, другими словами, индуктивное сопротивление дросселя очень велико в этот момент. В процессе насыщения сердечника соответствие В Н, где магнитная проницаемость материала сердечника, исчезает, магнитное поле Н может вырасти в тысячи раз, а индукция В всего на несколько десятков процентов, другими словами, индуктивное сопротивление насыщенного дросселя очень мало, а ток велик (в соответствии с IN Hl). Промежуток времени t от начала приложения напряжения Е к обмотке дросселя до появления состояния насыщения сердечника называют интервалом ожидания, который можно определить из (4) t BNS/E (5). Отсюда следует, что интервал ожидания обратно пропорционален приложенному к обмотке дросселя напряжению Е, это является наиболее важным для понимания работы предложенного инвертора.

На фиг. 1 представлена принципиальная электрическая схема инвертора; на фиг.2 функциональная схема одной секции блока управления входным электронным ключом.

Инвертор содержит дроссели 1-4 насыщения, трансформаторы 5 и 6 тока в качестве датчиков тока, последовательно соединенные конденсатор 7 и нагрузку 8, полностью управляемый входной электронный ключ 9, блок 10 управления входным электронным ключом.

Дроссель 1 насыщения связан первым выводом через трансформатор 5 тока с положительной шиной источника питания, а вторым выводом соединен с выводом конденсатора 7, дроссель 2 насыщения связан первым выводом через трансформатор 6 тока с положительной шиной источника питания, а вторым выводом соединен с выводом нагрузки 8, дроссель 3 насыщения соединен первым выводом с общей точкой соединения конденсатора 7 и дросселя 1 насыщения, дроссель 4 насыщения соединен первым выводом с общей точкой соединения нагрузки 8 и дросселя 2 насыщения, вторыми выводами дроссели 3 и 4 насыщения связаны через входной электронный ключ 9 с отрицательной шиной источника питания, вторичная обмотка трансформатора 5 тока соединена с первым входом блока 10, а вторичная обмотка трансформатора 6 тока соединена с вторым входом блока 10 управления входным ключом 9.

При запуске инвертора предварительно заряжают конденсатор 7 до напряжения Есп с полярностью, указанной на фиг.1 без скобок, затем включают в цепь инвертора. По внутренней первой цепи инвертора конденсатор 7 дроссель 1 насыщения трансформатор 5 тока трансформатор 6 тока дроссель 2 насыщения нагрузка 8 конденсатор 7 начинает течь небольшой ток, линейно возрастая со временем. Этот ток будет обратным для дросселя 1 насыщения и прямым для дросселя 2 насыщения. По внутренней второй цепи инвертора конденсатор 7 дроссель 3 насыщения дроссель 4 насыщения нагрузка 8 конденсатор 7 будет течь такой же небольшой, линейно растущий ток, который будет прямым для дросселя 3 насыщения и обратным для дросселя 4 насыщения. Следовательно, прямой ток будет течь по дросселям 2 и 3 насыщения, а обратный по дросселям 1 и 4 насыщения. Обратный ток определенной величины вызовет во вторичной обмотке трансформатора 5 тока, соединенной с первым входом блока 10 управления входным электронным ключом 9, напряжение, от которого сработает блок 10 и включит входной электронный ключ 9, который откроет путь току источника питания (не показан) с напряжением Еп. При этом на дроссели 2 и 3 насыщения будет действовать прямое напряжение Е Есп + Еп, увеличивающее ток по ним, а на дроссели 1 и 4 насыщения будет действовать обратное напряжение Е Есп Еп. В силу формулы (5) дроссели 2 и 3 насыщения войдут в состояние прямого насыщения быстрее, чем дроссели 1 и 4 в состояние обратного насыщения, поэтому конденсатор 7 перезарядится через дроссели 2 и 3 насыщения прямым током от источника питания, полярность напряжения Ес на конденсаторе 7 изменится (указано в скобках на фиг.1). При спаде прямого тока перезарядки, проходящего по дросселю 2 насыщения и соединенному с ним трансформатору 6 тока, определенная величина спадающего тока вызывает во вторичной обмотке трансформатора 6 тока напряжение, от которого срабатывает блок 10 управления входным ключом 9 и выключает его.

Так как полярность напряжения на конденсаторе 7 теперь обратна первоначальной, то по вышеуказанным двум внутренним цепям снова потекут небольшие, линейно растущие токи, но направления их будут противоположны первоначальным. Эти токи будут прямыми для дросселей 1 и 4 насыщения и обратными для дросселей 2 и 3 насыщения. Обратный ток определенной величины вызовет во вторичной обмотке трансформатора 6 тока, соединенной с вторым входом блока 10 управления входным ключом 9, напряжение, от которого сработает блок 10 и включит входной ключ 9, который откроет путь току источника питания. При этом на дроссели 1 и 4 насыщения будет действовать прямое напряжение Е Ес + Еп, увеличивающее прямой ток по дросселям 1 и 4 насыщения, а на дроссели 2 и 3 насыщения будет действовать обратное напряжение Е Есп Еп, в силу формулы (5) дроссели 1 и 4 насыщения быстрее войдут в состояние прямого насыщения, чем дроссели 2 и 3 в состояние обратного насыщения, поэтому конденсатор 7 зарядится через дроссели 1 и 4 насыщения от источника питания до напряжения Ес с первоначальной полярностью (указано без скобок на фиг.1). При спаде прямого тока зарядки конденсатора 7, проходящего по дросселю 1 насыщения и соединенному с ним трансформатору 5 тока, определенная величина спадающего тока вызовет во вторичной обмотке трансформатора 5 тока напряжение, от которого сработает блок 10 управления входным ключом 9 и выключит его. Схема вернулась в исходное состояние.

Включение и выключение входного электронного ключа 9 производится при ненасыщенных дросселях 1-4, следовательно, в указанной схеме осуществляется практически бестоковое включение-выключение входного ключа 9. Так как индуктивности дросселей насыщения одинаковы, то по нагрузке 8 будет протекать симметричный переменный ток.

Блок 10 управления входным электронным ключом 9 состоит из двух одинаковых секций, каждая содержит первый и второй каналы, первый канал включает входной ключ 9, а второй выключает его.

Первый канал содержит входной переменный резистор 11, усилитель-ограничитель 12, формирователь 13 прямоугольных импульсов, устройство 14 дифференцирования и выбора импульсов, формирователь 15 прямоугольных коротких импульсов, формирователь 16 прямоугольных импульсов, конечный усилитель 17.

С вторичной обмотки трансформатора тока, например трансформатора 5 тока, импульс напряжения, соответствующий определенной величине обратного тока, поступает на вход переменного резистора 11. Пусть импульс входного напряжения будет отрицательным, тогда с выхода резистора 11 сигнал поступает на инвертирующий вход усилителя-ограничителя 12, выполненного на операционном усилителе в варианте однополярного питания, положительный, ограниченный сверху сигнал поступает на вход формирователя 13 прямоугольных отрицательных импульсов, выполненного на одной ячейке 2И-НЕ, затем сигнал дифференцируется в устройстве 14, в нем же производится выбор отрицательной части продифференцированного импульса, с выхода устройства 14 сигнал поступает на вход формирователя 15 отрицательных коротких импульсов, выполненного на двух ячейках 2И-НЕ, соединенных последовательно, с выхода формирователя 15 сигнал поступает на вход формирователя 16 прямоугольных положительных импульсов, выполненного в виде моновибратора на таймере (типа КР1006ВИ1), выход с моновибратора соединен с входом конечного усилителя 17, выполненного с трансформаторным выходом.

Переменным резистором 11 задается начальная точка включения входного ключа 9 при запуске инвертора, т.е. задается такое начальное соответствие между величиной обратного тока, перемагничивающего дроссели насыщения в обратном направлении, и моментом включения входного ключа 9, что становится возможным инвертирование. Однажды заданное соответствие сохраняется при изменениях нагрузки и питающего напряжения. Имеется минимальная величина обратного тока, при которой инвертирование еще возможно, точку включения входного ключа 9 можно передвигать от минимальной величины обратного тока до его амплитудной величины, таким образом можно регулировать среднюю величину напряжения на нагрузке 8.

Второй канал содержит входной переменный резистор 18, усилитель-ограничитель 19, формирователь 20 прямоугольных импульсов, устройство 21 дифференцирования и выбора импульса, формирователь 22 коротких прямоугольных импульсов, формирователь 23 прямоугольных импульсов, конечный усилитель 24.

На входной переменный резистор 18 от трансформатора 5 тока поступает положительный сигнал от прямого тока его спадающей ветви. С резистора 18 сигнал поступает на неинвертирующий вход усилителя-ограничителя 19, выполненного на операционном усилителе в варианте однополярного питания, положительный, ограниченный сверху сигнал поступает на вход формирователя 20 отрицательных прямоугольных импульсов, выполненного на одной ячейке 2И-НЕ, затем сигнал дифференцируется в устройстве 21, в нем же производится выбор положительной части продифференцированного импульса. С выхода устройства 21 сигнал поступает на вход формирователя 22 коротких отрицательных импульсов, выполненного на одной ячейке 2И-НЕ, с выхода формирователя 22 сигнал поступает на вход формирователя 23 прямоугольных положительных импульсов, выполненного в виде моновибратора на таймере (типа КР1006ВИ1), выход моновибратора соединен с входом конечного усилителя 24 с трансформаторным выходом.

Блок 10 управления входным ключом 9 в вышеописанном исполнении предназначен для управления двухоперационным тиристором. Если же в качестве входного ключа применяется транзистор, то выход с формирователя 22 соединяют с входом "Сброс" формирователя 16, выполненного в виде моновибратора на таймере (КР1006ВИ1). Импульс с формирователя 22 ограничивает длительность выходного импульса формирователя 16, поэтому входной ключ транзистор будет открыт строго определенное время. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



АВТОНОМНЫЙ ИНВЕРТОР, содержащий последовательно соединенные конденсатор и нагрузку, электронный ключ, соединенный первым силовым выводом с отрицательной шиной источника питания, блок управления электронным ключом, отличающийся тем, что дополнительно введены нелинейные индуктивности первой, второй, третий и четвертый дроссели насыщения, первый и второй датчики тока, причем первый и второй дроссели насыщения первыми выводами связаны соответственно через первый и второй датчики тока с положительной шиной источника питания, а вторыми выводами соединены: первый дроссель насыщения с выводом конденсатора, второй дроссель насыщения с выводом нагрузки, третий дроссель насыщения соединен первым выводом с общей точкой соединения конденсатора и первого дросселя насыщения, четвертый дроссель насыщения соединен первым выводом с общей точкой соединения нагрузки и второго дросселя насыщения, а вторыми выводами соединены с вторым силовым выводом электронного ключа, выходы первого и второго датчиков тока соединены соответственно с первым и вторым входами блока управления электронным ключом.




ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к ЭЛЕКТРОЭНЕРГЕТИКЕ:
Гелиоэнергетика - Солнечные электростанции, Солнечные батареи. Солнечные коллекторы;
Ветроэнергетика - Ветроэнергетические установки. Ветродвигатели;
Волновые электростанции. Гидроэлектростанции;
Термоэлектрические источники тока;
Химические источники тока;
Нетрадиционные устройства и способы получения, преобразования и передачи ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ;
Устройства и способы экономии и сохранения электроэнергии;
Генераторы постоянного электрического тока. Электрические машины.



Устройства и способы получения, преобразования, передачи, экономии и сохранения электрической энергии




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+электрический -генератор".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "генератор" будут найдены слова "генераторы", "ренераторов" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("генератор!").


Солнечные электростанции. Гелиоэнергетика | Ветроэнергетические установки. Ветродвигатели. Ветрогенераторы | Волновые, геотермальные и гидроэлектростанции | Термоэлектрические источники тока | Химические источники тока. Накопители электроэнергии. Батареи и аккумуляторы | Нетрадиционные устройства и способы получения, преобразования и передачи электрической энергии | Устройства и способы экономии и сохранения электроэнергии | Генераторы постоянного и переменного электрического тока. Электрические машины


Рейтинг@Mail.ru