СПОСОБ ИЗГОТОВЛЕНИЯ СВИНЦОВО-КИСЛОТНОГО АККУМУЛЯТОРА

СПОСОБ ИЗГОТОВЛЕНИЯ СВИНЦОВО-КИСЛОТНОГО АККУМУЛЯТОРА


RU (11) 2177191 (13) C2

(51) 7 H01M4/22, H01M10/12 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 17.03.2008 - прекратил действие, но может быть восстановлен 

--------------------------------------------------------------------------------

(21) Заявка: 2000103899/09 
(22) Дата подачи заявки: 2000.02.16 
(24) Дата начала отсчета срока действия патента: 2000.02.16 
(45) Опубликовано: 2001.12.20 
(56) Список документов, цитированных в отчете о поиске: ДАСОЯН М.А. и др. Производство электрических аккумуляторов. Учебное пособие, изд-е 3-е. - М.: Высшая школа, 1977, с.355- 375. RU 1628788 С, 27.12.1998. SU 1232082 A1, 27.02.1997. US 4713304 A, 15.12.1987. US 4414303 A, 08.11.1983. 
(71) Заявитель(и): Мальцев Валерий Афанасьевич 
(72) Автор(ы): Мальцев В.А. 
(73) Патентообладатель(и): Мальцев Валерий Афанасьевич 
Адрес для переписки: 625001, г.Тюмень, ул. Садовая, 135а, кв.57, В.А.Мальцеву 

(54) СПОСОБ ИЗГОТОВЛЕНИЯ СВИНЦОВО-КИСЛОТНОГО АККУМУЛЯТОРА 

Изобретение относится к электротехнике, а в частности к производству свинцовых аккумуляторов. В предложенном способе положительные и отрицательные пластины намазывают электродной пастой, приготовленной из окисленного свинцового порошка и раствора серной кислоты. В отличие от существующих технических решений пластины перед сушкой пропитывают некоторое время в растворе гидроксида щелочного металла. Высушенные электродные пластины формируют в сернокислом электролите в формировочных баках или в готовых аккумуляторных батареях. Техническим результатом является обеспечение возможности формирования электродных пластин аккумулятора без газовыделения. При этом время формирования и затраты электрической энергии сокращаются в 1,5-2 раза. Активный материал пластин обоих знаков получается более качественным, без вздутий на отрицательных пластинах и без сульфатных пятен на положительных и не выкрашивается при изготовлении и эксплуатации. 6 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к электротехнической промышленности и может быть использовано в производстве свинцово-кислотных аккумуляторов.

В настоящее время свинцовые аккумуляторы изготовляют, используя порошковую технологию, которая осуществляется различными способами. Одним из них является способ, заявленный 31.05.88 г JP 88.134226 в Японии. Активный материал положительного электрода, изготовленного по этому способу, характеризуется высокой пористостью более 60% и преимущественным содержанием тетрагональной модификации двуокиси свинца -PbO2, содержание которой колеблется от 50 до 80 процентов. Сущность его заключается в совокупности следующих действий. Токоведущую основу пластины заполняют оксидом свинца PbO, погружают в раствор пироксодисульфата аммония. В результате происходит превращение PbO в ромбическую модификацию -PbO2. Затем пластину погружают в раствор серной кислоты H2SO4, и непрореагирующая окись PbO превращается в сульфат свинца. После проводят обжиг пластины, в результате которого образуется моносульфат свинца. В процессе последующего формирования происходит превращение сульфата свинца в -PbO2 и моносульфата в -PbO2 и -PbO2.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является известный способ изготовления свинцового аккумулятора, при котором положительные и отрицательные пластины намазывают электродной пастой, приготовленной из окисленного свинцового порошка и раствора серной кислоты, сушат, после чего формируют в растворе серной кислоты в формировочных баках или готовых аккумуляторных батареях. При этом аккумуляторы, отформированные батарейно, отправляются к потребителю в залитом состоянии, а из пластин, отформированных в баках и высушенных, собирают аккумуляторы в сухозаряженном исполнении (Дасоян М.А. и др. Производство электрических аккумуляторов. Учеб. пособие. Изд. 3-е, перераб. и доп. М., "Высшая школа", 1977).

Самым существенным недостатком этих способов являются чрезмерные затраты электрической энергии при формировании. И удлинение формировочного процесса, сильный разогрев электролита и обильное газовыделение, так называемый кислотный туман, наносящий ущерб здоровью обслуживающего персонала, оборудованию и строительным конструкциям. Кроме того, в результате газовыделения на отрицательных электродных пластинах наблюдаются вздутия, а активная масса положительных пластин получается рыхлой, слабосвязанной с токоотводом, что приводит к выкрашиванию при изготовлении и оплыванию при эксплуатации активного материала.

Причина проявления этих недостатков обосновывается следующими соображениями.

Вмазанная в токоотводы электродная паста имеет неоднородный состав и различную кислотность. На участках с щелочным характером пасты при формировании происходит гидролиз PbO + H2O ---> Pb2+ + 2OH- с последующим участием, полученных ионов в электрохимических процессах. Кислотные же участки подвергаются в основном дальнейшей сульфатации, в результате чего образуются сульфатные пятна. Поэтому электродные пластины формируются крайне неравномерно - очагами. Для обеспечения равномерности процесса по всей поверхности пластины предварительно перед формированием выдерживают в электролите, тем самым экранируя их сульфатной пленкой. Истинная поверхность, которая может участвовать в основном процессе, становится слишком малой, электроды сильно поляризуются. И газовыделение на положительной пластине начинается практически сразу же после включения электрического тока, так как при этом реализуется потенциал выделения кислорода. В начале скорость процесса мала, так как активно протекает основной электрохимический процесс образования двуокиси свинца Pb2+--> Pb4+---> PbO2. По мере истощения в зоне реакции запасов ионов Pb2+ скорость побочного процесса возрастает, и коэффициент использования тока падает. Во многом расход ионов Pb2+ связан не с основным процессом, а с химическим взаимодействием Pb2++SO4 2---->PbSO4, потому как сульфат-ионы движутся во время электродной реализации от отрицательной к положительной пластине, и концентрация их у первой в 1,4 раза выше, чем у последней. Сквозные сульфатные пятна трудно поддаются формированию, и выход по току положительной пластины обычно не превышает 80 процентов.

Из-за высокого перенапряжения выделения водорода при всех возможных реакциях, происходящих на формируемой отрицательной пластине, газ не выделяется. В данном случае электрод получается со стопроцентным выходом по току. Но двадцатипроцентная разница в готовности положительного и отрицательного электродов при дальнейшем совместном формировании вынуждает смещать в отрицательную сторону потенциал полностью сформированной отрицательной пластины до тех пор, пока не начнет выделяться водород. Разность потенциалов на разноименных пластинах достигает величины 2,6-2,8 В. Газовыделение увеличивается в 100-150 раз по сравнению с первоначальной стадией. Почти весь ток при этом расходуется на разложение воды на кислород и водород В итоге такой технологии формирования выход по энергии не превышает 50%, а время формирования практически удваивается, структура активного материала пластин обоих знаков проигрывает в качестве материалам, полученным без газовыделения.

Заявляемое изобретение направлено на устранение вышеперечисленных недостатков. Задача решается следующим образом. Положительные и отрицательные пластины намазывают электродной пастой, приготовленной в специальном смесителе из окисленного свинцового порошка и раствора серной кислоты.

В отличие от прототипа и других способов свеженамазанные электродные пластины пропитывают в растворе гидроксида щелочного металла (NaOH или КОН). Затем сушат в электрическом или газовом сушиле и досушивают при комнатной температуре. После чего пластины формируют в сернокислом электролите в формировочных баках или готовых аккумуляторных батареях.

Целесообразность применения щелочных растворов для пропитки электродных пластин трактуется нижеизложенным текстом.

При пропитке электродной пасты пластин гидроокисью щелочного металла сульфат-ионы образуют растворимые соли Na2SO4 или K2SO4. А ионы свинца соединяются с гидроксил-ионами, образуя на поверхности пластин гидроксид свинца Pb(OH)2. Такие пластины не имеют на своей поверхности кислотных участков.

Поэтому гидролиз происходит по всей поверхности. Из-за присутствия в электродной пасте значительного количества гидроксида свинца Pb(OH)2 приэлектродный слой электролита в начальный период формирования имеет водородный показатель pH > 7; потенциалы обоих электродов смещаются в отрицательную сторону. На положительной пластине в щелочной среде идет интенсивное образование двуокиси свинца обеих модификаций -PbO2, -PbO2 по реакциям Pb2+--->PbO2 и 3PbOPbSO4H2O--->PbO2, а также образование промежуточных окислов непосредственно из трехосновного сульфата свинца 3PbO PbSO4 H2O ---> Pb2O3, 3PbO PbSO4 H2O ---> Pb3O4. В результате этого полученные компоненты образуют в пластине своеобразный каркас, хорошо проводящий электрический ток, и поляризация по всей поверхности происходит равномерно. На отрицательной пластине, напротив, имеющие место в кислой среде реакции PbO --->Pb, 3PbO PbSO4 H2O ---> Pb в данном случае отсутствуют, а процесс восстановления свинца идет из ионов, находящихся в растворе Pb2+ + 2e ---> Pb. Замена на отрицательной пластине реагирующих по очереди исходных компонентов электродной пасты PbO и 3PbO PbSO4 H2O на ионы, полученные путем гидролиза и растворения гидроксида свинца в серной кислоте, также обеспечивает равномерное формирование и отрицательной пластины.

В отличие от малорастворимой соли PbSO4 гидроксид свинца Pb(OH)2 прекрасно растворяется в серной кислоте, так как гидроксил-ион, посылаемый щелочью в раствор, образует с ионом водорода кислоты малодиссоциированную воду Pb(OH)2 + 2H+ ---> Pb2+ + 2H2O. Вследствие этого гидроокись будет растворяться до тех пор, пока произведение концентраций ее ионов снова не сделается равным произведению растворимости. Процесс идет до конца. Раствор оказывается пересыщенным ионами свинца Pb2+, которые интенсивно вступают в электрохимическое взаимодействие. Процесс растворения гидроокиси свинца происходит самопроизвольно, что, естественно, приводит к снижению потенциалов поляризуемых электродов. Исключительное значение представляет снижение перенапряжения образования PbO2 на диоксидно-свинцовом электроде. Если потенциал формируемой положительной пластины во время всего цикла будет меньше потенциала точки нулевого заряда, величина которого для PbO2 в зависимости от концентрации раствора H2SO4 лежит в пределах от 1,7 В для крепких и 1,9 В для сильно разбавленных растворов по водородной шкале, то поверхность электрода будет иметь отрицательный заряд по отношению к ионам ОН-. Тем самым гидроксил-ионы не смогут адсорбироваться и разряжаться на этой поверхности, то есть процесс станет невозможным, что приведет к стопроцентному выходу по току положительной пластины.

Величину изменения перенапряжения на каждом из электродов определим, рассмотрев термодинамику формировочного процесса, в частности, найдя приращения свободной энергии Гиббса, полученные в результате взаимодействия гидроксида свинца с серной кислотой в процессе формирования.

Согласно теории двойной сульфатации в свинцовом аккумуляторе на электродах во время заряда происходят следующие реакции:

на отрицательном свинцово-сульфатном

PbSO4 + H+ + 2e ---> Pb + H2O,

на положительном свинцово-диоксидном

PbSO4 + 2H2O ---> PbO2 + HSO4 - + 3H+ + 2e.

И суммарная, определяющая основной зарядный процесс

2PbSO4 + 2H2O ---> Pb + PbO2 + 2H2SO4.

Наличие гидроокиси свинца в электродной пасте усложняет процессы ионизации на этих электродах. Потому что исходным веществом при получении продуктов Pb и PbO2 вместо PbSO4 становится Pb(OH)2. При постоянном давлении и температуре P, T= const. Свободная энергия Гиббса не зависит от формы пути. Поэтому переход от Pb(OH)2 к PbO2 и от Pb(OH)2 к Pb осуществим по соответствующим схемам:





которым соответствуют уравнения в полной форме:

на положительном электроде

1. Pb +2H2O ---> Pb(OH)2 +2H+ + 2e;

2. Pb + HSO4 - ---> PbSO4 + H+ + 2e;

3. PbSO4 + 2H2O ---> PbO2 + HSO4 - + 3H+ + 2e

и на отрицательном

1. Pb(OH)2 + 2H+ + 2e ---> Pb + 2H2O;

2. PbSO4 + H+ + 2e ---> Pb + HSO4 -;

3. PbSO4 + H+ + 2e ---> Pb + HSO4 -.

Если просуммировать первые три уравнения, отражающих анодный процесс, с тремя другими катодного процесса, получим уравнение основного зарядного процесса.

Далее осуществим процесс на электродах раздельно. Для этого при формировании положительного электрода в качестве катода используем свинцово-диоксидный электрод, а в качестве анода во втором случае свинцово-сульфатный электрод. То есть проведем электролиз в электрохимических ячейках

(+) Pb(OH)2 |H2SO4| PbO2 (-);

(-) Pb(OH)2 |H2SO4| Pb (+).

При электролизе в этих ячейках будут протекать реакции:

в первой

1. Pb + 2H2O ---> Pb(OH)2 + 2H+ + 2e;

2. Pb + HSO4 - ---> PbSO4 + H+ + 2e;

3. PbSO4 + 2H2O ---> PbO2 + HSO4 - + 3H+ + 2e;

4. PbO2 + HSO4 - + 3H+ + 2e ---> PbSO4 + 2H2O;

во второй

1. Pb(OH)2 + 2H+ + 2e ---> Pb + 2H2O;

2. PbSO4 + H+ + 2e ---> Pb + HSO4 -;

3. PbSO4 + H+ + 2e ---> Pb + HSO4 -;

4. Pb + HSO4 - ---> PbSO4 + H+ + 2e.

Суммирование уравнений, происходящих в каждой ячейке, показывает, что приращение свободной энергии Гиббса, связанное с применением Pb(OH)2, определяется первыми двумя уравнениями и имеет разное по знаку, но одно и то же абсолютное значение.

Нетрудно также видеть, что если соединить последовательно данные электрохимические ячейки, то напряжение этой системы будет равным нулю. Естественно, равным нулю будет и ток. А это означает, что, измерив непосредственно напряжение на каждом из элементов, определим электродвижущие силы (ЭДС), то есть по существу измерим величину перенапряжений на формируемых положительном и отрицательном электродах. Так, например, ЭДС каждой из ячеек, составленных из свеженамазанных пластин попарно со свинцово- диоксидным и свинцово-сульфатным электродами, соединенных последовательно в одномолярном растворе H2SO4 m=1 и комнатной температуре, составляет 0,1 В в первой и -0,1 В во второй.

Такой же результат получается при теоретическом определении ЭДС. Для чего уравнения первой ячейки просуммируем в таком порядке: первое с четвертым, второе с третьим.



Сумму третьего и второго:



представим в виде разности



Так как сумма последних уравнений представляет собой зарядный процесс свинцового аккумулятора и совпадает с зарядным уравнением системы последовательно соединенных элементов

(+)PbO2|H2SO4)H2(-);

(+)H2|H2SO4|Pb(-),

составленных попарно из водородного электрода со свинцово-диоксидным и свинцово-сульфатным, то разность этих уравнений, очевидно, равна разности зарядных уравнений указанных элементов



Итак, сумма третьего и второго уравнений эквивалентна уравнению

2H2O - 2H2 ---> PbO2 - Pb.

Сложив его с суммой первого и четвертого, получим



Определим изменение свободной энергии Гиббса по этому уравнению, используя стандартные значения термодинамических характеристик



G0 = -100,6 - 193,89 + 2(56,69) + 177,34 = -3,77 ккал/моль.

Так как максимальная работа A процесса равна взятому с обратным знаком изменению свободной энергии

A=zFEo =-AGo,

где Eo - стандартная ЭДС,

F - константа Фарадея,

Z - число электронов, участвующих в реакции.

Тогда Eo = 3,77/(2 23,06) = 0,0817 В.

ЭДС первой ячейки в сернокислом растворе с концентрацией m=1:





активность воды и серной кислоты в данном растворе равны приблизительно 

E1 = 0,0817 + 0,0010 + 0,0262 = 0,1089

и E2 = -0,1089.

Совпадение теоретических и экспериментальных значений ЭДС подтверждает ключевую роль Pb(OH)2 в снижении перенапряжения на положительном и повышении на отрицательном формируемых электродах.

Сравнительные замеры потенциалов пропитанных в щелочи с непропитанными пластинами под током во время формирования показывают, что разница в 0,1 В сохраняется в течение всего процесса, в то же время химический анализ свеженамазанных пластин, в которых обнаружено следующее процентное содержание соединений PbO - 86%, PbSO4 - 13% для обычных и PbO - 86%, PbSO4 - 8% для пропитанных щелочью электродов показывает, что Pb(OH)2 в электродной пасте не превышает пяти процентов. Но данное количество позволяет сохранить процесс гидролиза электродной пасты в течение всего формировочного цикла. При химическом взаимодействии обычных пластин

PbO + H2SO4 ---> PbSO4 + H2O,

предшествующему электрохимическому процессу, на каждом электроде образуется по одной молекуле H2O, которые превращаются при электролизе в две молекулы кислоты

2PbSO4 + 2H2O ---> Pb + PbO2 + 2H2SO4.

Электроды, обработанные щелочью, взаимодействуют с кислотой по реакции

Pb(OH)2 + H2SO4 ---> PbSO4 + 2H2O,

то есть на каждом электроде образуется по две молекуле воды. В итоге на каждом электроде остается по молекуле для гидролиза

PbO + H2O ---> Pb(OH)2.

В пользу того, что во втором случае химическое взаимодействие происходит по схеме

PbO ---> Pb(OH)2 ---> PbSO4

указывает равенство концентраций электролита до и после формирования.

Таким образом, используя при изготовлении аккумулятора гидроксид натрия или калия, можно весь формировочный процесс провести без сульфатации электродов по уравнениям

Pb2+ ---> Pb и Pb2+ ---> PbO2,

которые выгодно отличаются от процессов PbSO4 ---> Pb и PbSO4 ---> PbO2, сопровождающих обычно заключительную часть формирования, что позволяет сэкономить значительную часть времени и электроэнергии. Положительные электроды при этом способе изготовления имеют более низкий равновесный потенциал, а стало быть, более высокую окисленность.

Для пояснения текста приводятся следующие графические материалы:

Фиг. 1 представлена графиками потенциалостатического формирования контрольной 1 и опытной 2 положительных пластин в координатах плотность тока - время. На фиг. 2 изображены графики зависимости потенциала положительной пластины контрольной 1 и опытной 2 от времени формирования. Графики на фиг. 3 устанавливают зависимость между напряжением и временем формирования в зависимости от различного сочетания опытных и контрольных пластин. Кривые на фиг. 4 в сочетании с осями координат (напряжение - время) дают сопоставительный анализ затрат электрической энергии при старом и новом способах формирования. Фиг. 5 представляет собой таблицу, в которую сведены результаты формирования и разряда серийных 1, 2 и опытной 3 аккумуляторных батарей. На фиг. 6 представлены разрядные кривые соответствующих батарей.

Сущность предлагаемого изобретения поясняется примерами конкретного осуществления способа. Все приведенные примеры и другие опытно-испытательные работы проведены на Тюменском аккумуляторном заводе. В качестве объекта исследования использовали двойные электродные пластины: положительные 2СТП-4, 2СТП-5 и отрицательные 2СТО-3, 2СТО-5 на серийных унифицированных токоотводах толщиной 1,6 мм; 1,4 мм с односторонней геометрической поверхностью 3,8 дм2 и 3,6 дм2 соответственно. Сравнительные результаты, характеризующие отличие предлагаемого способа от прототипа, оформлены в виде графиков.

В приведенных ниже примерах опытные и контрольные пластины обоих знаков намазывают по серийной технологии электродной пастой, приготовленной смешиванием рецептурных количеств окисленного свинцового порошка и раствора серной кислоты. Затем опытные пластины подвергают дальнейшей пропитке (обработке) в гидроксиде щелочного металла. В первых двух примерах пластины подвергали пропитке перед сушкой в соответствии с формулой изобретения. В третьем примере пропитывали блоки с высушенными пластинами, что не менее эффективно, но затруднено технологически.

Пример 1.

Пастированные положительные пластины 2СТП-5 окунанием обрабатывали в 15-процентном растворе КОН в течение 15 минут, затем подвергали сушке, пропуская через электрическое сушило, и двое суток досушивали на воздухе при комнатной температуре. Пластины, изготовленные описанным способом, и контрольные из той же партии формировали в сернокислом растворе плотностью d = 1,07 г/см3 в избытке электролита совместно с отрицательными, изготовленными серийно. При этом контрольные пластины предварительно перед подключением источника питания в течение одного часа выдерживали в электролите. Формирование велось до исчезновения сульфатных пятен.

На фиг. 1 изображена зависимость плотности тока на видимую поверхность пластины 3,6 дм2 от времени при потенциалостатическом формировании. Потенциал положительной пластины o составлял o = 2,3 В по кадмию. Корректировка тока времени формирования при пропускании тока 5 А на одностороннюю поверхность пластины. В начальный момент перенапрежение на контрольной пластине слишком велико из-за сульфатной пленки, экранирующей поверхность пластины, электродный процесс идет лишь на токоотводе. На опытной пластине перенапряжение, напротив, имеет отрицательное значение, то есть ниже потенциала равновесия PbSO4 = PbO2, что объясняется щелочным характером приэлектролитного слоя пластины. В последующие часы формирования вплоть до окончания перенапряжение электродного процесса опытной пластины значительно ниже и разница по отношению к контрольной составляет от 0,1 до 0,01 В.

Пример 2.

Свеженамазанные положительные пластины 2СТП-4 и отрицательные 2СТО-3 обрабатывались в 22-процентном растворе NaOH в течение 5 минут и сушились по серийной технологии, как в первом примере. Затем формировались в растворе H2SO4 в формировочных баках, соединенных последовательно в группу. В первом баке были установлены контрольные необработанные щелочью разноименные пластины. Во втором пластины обоих знаков были опытными, обработанными в растворе NaOH. В третьем опытные положительные формировались с серийными отрицательными и в четвертом баке наоборот завешены обычные положительные и опытные отрицательные. Через группу пропускался формировочный ток из расчета 4,8 ампера на одностороннюю поверхность пластины 3,8 дм2 или 1,26 А/дм2. На пластинах каждого бака во время всего формировочного процесса производились замеры напряжения, по результатам которых построены графики на фиг. 3. Номера кривых соответствуют номерам баков. Из графика видно, что в промежутке от 1 часа до 7 часов кривая 3 расположена ниже, а кривая 4 выше кривых 1 и 2 на одну и ту же величину, обусловленную растворением Pb(OH)2 на электродах. Кривые 1 и 2 сливаются, так как обе пластины во втором баке обработаны щелочью; и на какую величину перенапряжение на положительной пластине выше, на такую же величину на отрицательной ниже. В итоге разность потенциалов на пластинах второго бака остается равной напряжению пластин первого бака. Второй и третий бак выходят значительно раньше в связи с тем, что обработанные положительные пластины формируются равномерно без сульфатных пятен. На фиг. 4 заштрихованная площадь представляет собой энергию, которую можно сэкономить, если обработать положительную пластину гидроксидом щелочного металла. Здесь кривая 1 соответствует напряжению серийных пластин, а вторая - напряжению опытных положительных в комплекте с обычными отрицательными. Ток формирования 4,8 А на положительную пластину.

Пример 3.

Со сборочного конвейера было снято 3 аккумуляторные батареи 6СТ-55ПМА. Из одной из них были вынуты аккумуляторные блоки и на 15 минут опущены в моноблок с 15-процентным раствором NaOH. После пропитки блоки высушили сжатым воздухом. Затем поместили в батарею и произвели сварку всех батарей на конвейере, залили электролитом плотностью 1,23 г/см3. Первую батарею поставили на формирование через 2 часа после заливки электролита, вторую - через 4 часа, а третью с обработанными блоками пластин - без предварительной выдержки. Формирование велось по обычной схеме до постоянства плотности электролита и напряжения в течение 2 часов. Первые две батареи формировались по режиму: 6 А - 4 ч, 7,5 А - 10 ч, 6 А - 16 ч, 3 А - 12 ч, а третья по режиму 20 А - 0,5 ч, 10 А - 6 ч, 5 А - 10 ч, 3 А - 4 ч.

На первых двух батареях плотность выросла до 1,28 г/см3, а в третьей осталась прежней 1,23 г/см3. Ее скорректировали до 1,28 г/см3 и все батареи поставили на испытание по 20-часовому режиму разряда. Зарядно-разрядные характеристики сведены в таблицу на фиг. 5. На фиг. 6 построены разрядные кривые этих батарей. Номера кривых соответствуют номерам батарей. Кривая 3 оказалась несколько выше других, что связано, очевидно, с более низким потенциалом отрицательных пластин. При этом при формировании третьей батареи было затрачено приблизительно в два раза меньше времени и энергии.

Таким образом, теоретические и опытные данные подтверждают преимущество этого способа над прототипом. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



Способ изготовления свинцово-кислотного аккумулятора, включающий намазку положительных и отрицательных пластин электродной пастой, приготовленной из окисленного свинцового порошка и раствора серной кислоты, сушку и формирование в сернокислом электролите в формировочных баках или в готовых аккумуляторных батареях, отличающийся тем, что свеженамазанные электродные пластины перед сушкой пропитывают в растворе гидроксида щелочного металла.




ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к ЭЛЕКТРОЭНЕРГЕТИКЕ:
Гелиоэнергетика - Солнечные электростанции, Солнечные батареи. Солнечные коллекторы;
Ветроэнергетика - Ветроэнергетические установки. Ветродвигатели;
Волновые электростанции. Гидроэлектростанции;
Термоэлектрические источники тока;
Химические источники тока;
Нетрадиционные устройства и способы получения, преобразования и передачи ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ;
Устройства и способы экономии и сохранения электроэнергии;
Генераторы постоянного электрического тока. Электрические машины.



Устройства и способы получения, преобразования, передачи, экономии и сохранения электрической энергии




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+электрический -генератор".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "генератор" будут найдены слова "генераторы", "ренераторов" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("генератор!").


Солнечные электростанции. Гелиоэнергетика | Ветроэнергетические установки. Ветродвигатели. Ветрогенераторы | Волновые, геотермальные и гидроэлектростанции | Термоэлектрические источники тока | Химические источники тока. Накопители электроэнергии. Батареи и аккумуляторы | Нетрадиционные устройства и способы получения, преобразования и передачи электрической энергии | Устройства и способы экономии и сохранения электроэнергии | Генераторы постоянного и переменного электрического тока. Электрические машины


Рейтинг@Mail.ru