АКТИВНЫЙ МАТЕРИАЛ ЭЛЕКТРОДА ХИМИЧЕСКОГО ИСТОЧНИКА ТОКА

АКТИВНЫЙ МАТЕРИАЛ ЭЛЕКТРОДА ХИМИЧЕСКОГО ИСТОЧНИКА ТОКА


RU (11) 2154326 (13) C2

(51) 7 H01M6/36, H01M4/40 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 17.03.2008 - может прекратить свое действие 

--------------------------------------------------------------------------------

(21) Заявка: 3195082/09 
(22) Дата подачи заявки: 1988.03.24 
(24) Дата начала отсчета срока действия патента: 2000.02.25 
(45) Опубликовано: 2000.08.10 
(56) Список документов, цитированных в отчете о поиске: US 3969139 A, 28.07.1976. 
(71) Заявитель(и): Федеральное государственное унитарное предприятие "Научно- производственное предприятие "Квант" 
(72) Автор(ы): Абенэ А.В.; Кофман Г.П.; Невская Н.В.; Петухова А.И.; Смирнова Н.С. 
(73) Патентообладатель(и): Федеральное государственное унитарное предприятие "Научно- производственное предприятие "Квант" 
Адрес для переписки: 129626, Москва, ул.3-я Мытищинская 16, НПП "Квант" 

(54) АКТИВНЫЙ МАТЕРИАЛ ЭЛЕКТРОДА ХИМИЧЕСКОГО ИСТОЧНИКА ТОКА 

Изобретение относится к химическим источникам тока, а именно к активному материалу электрода. Техническим результатом изобретения является расширение температурного диапазона работоспособности. Согласно изобретению активный материал электрода содержит, мас.%: литий 33 - 56, кремний 42 - 59, асбестовое волокно 2 - 8. 3 табл. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к химическим источникам тока, а именно к активному материалу электродов (анодов) на основе сплава литий-кремний, применяемым в тепловых источниках тока и источниках тока с неводными апротонными электролитами.

Известен литий-кремневый электрод, представляющий собой пористую металлическую матрицу, пропитанную в качестве активного материала сплавом литий-кремний (патент США N 3969139 от 13.06.76 Lai S.C.).

Недостатками активного материала этого электрода являются низкие удельные емкостные характеристики из-за наличия пористой металлической матрицы.

Известны прессованные электроды из сплава литий-кремний, содержащие до 55 мас. % лития. Однако только электроды, содержащие до 45 мас.% лития, работают надежно (Bush D.M.SAND 79-0470, The Li/FeS2 System for Thermal Batteries p. 16).

Увеличение количества лития в сплаве более 45 мас.% приводит к выплавлению из электрода при рабочих температурах элемента жидкого лития и реакции выплавившегося лития с корпусом батареи. Особенно этот эффект заметен при температурах выше 600oC. Поэтому в реальных ТИТ применяются обычно электроды, содержащие 42-45 мас.% лития. Температурный диапазон работоспособности элементов, активный материал которых представляет собой сплав литий-кремний (45 мас.% лития), составляет от 440 до 600oC.

Целью предполагаемого изобретения является расширение температурного диапазона работоспособности элементов с активным материалом отрицательного электрода на основе сплава литий-кремний.

Эта цель достигается тем, что в активном материале электрода, содержащем литий, кремний и асбест, указанные компоненты находятся в следующем соотношении: (мас.%) литий - 33-56, кремний - 42-59, асбест - 2-8.

Присутствие в электродной массе асбестового волокна в количестве 2-8 мас.%, обладающего высокой адсорбционной способностью, позволяет довести содержание лития до 56 мас.% и предотвращает вытекание лития из электрода при рабочей температуре элемента, расширяет температурный диапазон работоспособности элемента.

Количество асбеста в электроде должно быть достаточным для связывания капель жидкого лития, образующихся при рабочей температуре элемента, а также для придания электроду достаточной механической прочности.

В электродной массе должно быть не менее 2 мас.% асбестового волокна. Если асбестового волокна меньше 2 мас.%, то может происходить осыпание порошкового кремния с листового композиционного материала, и из-за нарушения состава электродной массы, в свою очередь, может происходить вытекание лития при рабочей температуре элемента.

Если асбестового волокна в электродной массе больше 8 мас.%, то, во-первых, увеличивается омическое сопротивление электродов, а, во-вторых, из-за увеличения толщины электрода ухудшаются удельные объемные электрические характеристики элемента.

Соотношение литий-кремний может меняться в широких пределах. В зависимости от назначения электрода количество лития в нем может быть от единиц процентов до 56 мас.%. Меньше 33 мас.% лития в электроде применять не целесообразно, поскольку удельная емкость такого электрода не достаточно велика, а у электродов с количеством лития более 56 мас.% при рабочей температуре возможны вытеки жидкого лития.

Уменьшение количества кремния в электроде ниже 42 мас.% приводит к вытеканию лития при рабочих температурах элемента.

Увеличение количества кремния более 59 мас.% приводит к уменьшению удельной емкости электрода и возрастанию внутреннего сопротивления.

Были изготовлены электрохимические элементы на системе LiSi|LiCl-KCl|FeS2 диаметром 50 мм (Sраб = 19,6 см2) с различными составами литий-кремниевых электродов. Варианты составов использованных электродных смесей приведены в таблице 1.

Во всех электродах в сплаве LiSi содержалось 0,84 г лития. Электродная масса находилась в чашках из никеля толщиной 0,1 мм. Чашки удерживали активную электродную массу и являлись токовыми коллекторами.

Высота борта корпуса 1,2-1,5 мм, масса корпуса 1,08 г. Толщина электрода после термообработки составляла 0,8-0,9 мм.

Электролитный слой двуслойной таблетки выполнен из смеси эвтектики LiCl-KCl - 68 мас.% и загустителя Al2O3 - 32 мас.%, масса электролитного слоя 3 г (0,15 г/см2). Катодный слой двуслойной таблетки выполнен из смеси 75 мас. % FeS2 и 25 мас.% загущенного электролита, состоящего из (LiCl-KCl) эвт - 87 мас.% и двуокиси кремния - 13 мас.%. Навеска катодной смеси - 7,0 г (0,35 г/см2).

Испытания элементов режимом i = 50 мА/см2 проводились в электронагревателе при температурах от 440 до 640oC.

Наибольшим временем работы обладали элементы с электродной массой N 4 (см. таблицу 1).

Результаты испытаний этих элементов в электронагревателе при различных температурах режимами i1 = 50 мА/см2 и i2 = 150 мА/см2 представлены в таблице 2.

Для сравнения в таблице 3 приведены результаты исследования элементов системы LiSi/LiCl-KCl/FeS2, проведенных в лаборатории американской фирмы "Sandia" (Bush D. M. SAND 79-0470, 1979 г.). Элементы диаметром 35,7 мм с площадью электродов 10 см2 были разряжены в электронагревателе при температурах от 440 до 600oC.

Аноды этих элементов представляют собой таблетки 35,7 мм, отпрессованные из порошка сплава LiSi (42-45 мас.% Li) с размером частиц от 40 до 200 меш. Плотность таблеток до 1 г/см3.

Анодная масса составляет 0,1 г/см2. Электролитные таблетки отпрессованы из порошка (EB), представляющего собой смесь электролита (LiCl-KCl) эвт - 70 мас. % и загустителя - окиси магния - 30 мас.%. Масса электролита (0,3 г/см2). Катодные таблетки отпрессованы из смеси FeS2 - 64 мас.%, эвтектики (LiCl-KCl) - 16 мас.% и 20 мас.% сплава [(LiCl-KCl) эвт - 88 мас.% и SiO2 - 12 мас.%]. Плотность катодных таблеток 2,6 г/см3. Масса катода 0,4 г/см2.

Как показали проведенные испытания, элементы, выполненные с анодами, являющимися предметом предполагаемого изобретения, работоспособны в температурном диапазоне 440-640oC.

В электроде может быть использовано и другое волокнистое связующее, например каолиновое волокно, стекловолокно, волокно из нитрида бора и окиси иттрия. Однако при выборе связующего необходимо учитывать, что связующее является компонентом композиционного материала, изготавливаемого путем вакуумной фильтрации. Волокнистое связующее и кремниевый порошок должны образовывать устойчивую суспензию, т.е. замена асбестового волокна на другое волокнистое связующее влечет за собой специальный подбор дисперсионной среды для изготовления суспензии кремниевый порошок - волокно. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



Активный материал электрода химического источника тока, содержащий литий, кремний и асбест, отличающийся тем, что указанные компоненты взяты в следующем соотношении, мас.%:

Литий - 33 - 56

Кремний - 42 - 59

Асбестовое волокно - 2 - 8




ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к ЭЛЕКТРОЭНЕРГЕТИКЕ:
Гелиоэнергетика - Солнечные электростанции, Солнечные батареи. Солнечные коллекторы;
Ветроэнергетика - Ветроэнергетические установки. Ветродвигатели;
Волновые электростанции. Гидроэлектростанции;
Термоэлектрические источники тока;
Химические источники тока;
Нетрадиционные устройства и способы получения, преобразования и передачи ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ;
Устройства и способы экономии и сохранения электроэнергии;
Генераторы постоянного электрического тока. Электрические машины.



Устройства и способы получения, преобразования, передачи, экономии и сохранения электрической энергии




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+электрический -генератор".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "генератор" будут найдены слова "генераторы", "ренераторов" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("генератор!").


Солнечные электростанции. Гелиоэнергетика | Ветроэнергетические установки. Ветродвигатели. Ветрогенераторы | Волновые, геотермальные и гидроэлектростанции | Термоэлектрические источники тока | Химические источники тока. Накопители электроэнергии. Батареи и аккумуляторы | Нетрадиционные устройства и способы получения, преобразования и передачи электрической энергии | Устройства и способы экономии и сохранения электроэнергии | Генераторы постоянного и переменного электрического тока. Электрические машины


Рейтинг@Mail.ru