СТАЛЬ НА ОСНОВЕ АЛЮМИНИЯ ДЛЯ АНОДОВ СОЛЕВЫХ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА

СТАЛЬ НА ОСНОВЕ АЛЮМИНИЯ ДЛЯ АНОДОВ СОЛЕВЫХ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА


RU (11) 2035094 (13) C1

(51) 6 H01M4/46, C22C21/00 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 17.03.2008 - прекратил действие 

--------------------------------------------------------------------------------

(21) Заявка: 92006750/07 
(22) Дата подачи заявки: 1992.11.17 
(45) Опубликовано: 1995.05.10 
(56) Список документов, цитированных в отчете о поиске: 1. Патент США N 4792430, кл. C 22C 21/00, 1988. 2. Патент Великобритании N 42205855, кл. C 22C 21/00, 1988. 3. Патент ФРГ N 3820550, кл. C 22C 21/00, 1989. 4. Патент США N 4808498, кл. H 01M 4/46, C 22C 21/00, 1989. 
(71) Заявитель(и): Бычковский С.К.; Бурыгин А.А.; Дмитренко С.В.; Кассюра В.П.; Самойлова Л.А. 
(72) Автор(ы): Бычковский С.К.; Бурыгин А.А.; Дмитренко С.В.; Кассюра В.П.; Самойлова Л.А. 
(73) Патентообладатель(и): Кассюра Виктор Петрович 

(54) СТАЛЬ НА ОСНОВЕ АЛЮМИНИЯ ДЛЯ АНОДОВ СОЛЕВЫХ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА 

Использование: солевые химические источники тока с алюминиевым анодом. Сущность изобретения: сплав на основе алюминия для солевого химического источника тока содержит, мас.%: олово 0,05 - 0,25; галлий 0,005 - 0,1; свинец 0,005 - 0,1; натрий 0,0001 - 0,01; стронций 0,0001 - 0,01; алюминий остальное. Указанный сплав обладает пониженной скоростью коррозии, что повышает эффективность и надежность источника. 2 табл. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к химическим источникам тока, а именно к солевым химическим источникам тока с алюминиевым анодом.

Для изготовления химических источников тока с целью получения электроэнергии путем использования электрохимической реакции между воздушным катодом и металлическим анодом, в качестве анодов используют алюминиевые сплавы.

Известен состав сплава для анодов, приведенный в [1] при следующем соотношении компонентов, мас. Кремний 0,002-0,006 Олово 0,03-0,02 Галлий 0,007-0,03 Алюминий (чист. 99,995) Остальное

Сплав обладает довольно отрицательным значением стационарного потенциала и потенциала под током, однако низкая коррозионная стойкость и высокая скорость выделения водорода при электрохимической коррозии не позволяют эффективно применять его в солевых химических источниках тока.

Известен также состав сплава, приведенный в [2] при следующем соотношении элементов, мас. Индий 0,005-0,05 Цинк 0,05-8,0 Магний 0,02-2,0 Марганец 0,01-0,3 Галлий 0,003-0,05 Кремний 0,03-0,4 Алюминий Остальное

Сплав обладает достаточно высоким значением стационарного потенциала, однако высокая скорость электрохимической коррозии и низкое значение потенциала под нагрузкой не позволяют применять его в солевых химических источниках тока с приемлемыми эксплуатационными характеристиками.

В [3] приведен состав сплава для анодов при следующем соотношении элементов, мас. Индий 0,005-0,05 Цинк 0,05-8,0 Магний 0,02-2,0 Марганец 0,01-0,3 Галлий 0,003-0,05 Железо 0,03-0,3 Кремний 0,03-0,4 Медь До 0,02 Алюминий Остальное

Сплав обладает высоким отрицательным значением стационарного потенциала, однако при поляризации потенциал резко сдвигается в положительную сторону. Кроме того, из-за относительно высоких значений содержания в сплаве железа и меди скорость коррозии сплава высока как в бестоковом режиме, так и при поляризации. Совокупность этих отрицательных факторов не позволяет эффективно применять указанный сплав в солевых химических источниках тока.

Наиболее близким по составу и свойствам к предложенному в изобретении составу сплава является состав сплава по [4] при следующем соотношении компонентов, мас. Галлий 0,01-0,2 Олово 0,01-0,2 Свинец 0,01-0,2 Алюминий Остальное

Указанный состав сплава взят за прототип (базовый объект). Сплав обладает достаточно отрицательным значением стационарного потенциала, однако значение потенциала под током не достаточно отрицательно, а скорость саморастворения сплава под током высока, что препятствует широкому применению сплава в солевых химических источниках тока.

Целью настоящего изобретения является повышение значений электрохимических параметров и снижение скорости коррозии сплава, что способствует существенному повышению надежности и эффективности применения солевых химических источников тока с алюминиевым анодом, а также расширению области использования анодов из алюминиевых сплавов в солевых химических источниках тока различного назначения.

Поставленная цель достигается тем, что предлагается состав сплава для анодов солевых химических источников тока, включающий олово, галлий и свинец, который дополнительно содержит натрий и стронций при следующем соотношении компонентов, мас. Олово 0,05-0,25 Галлий 0,005-0,1 Свинец 0,005-0,1 Натрий 0,0001-0,01 Стронций 0,0001-0,01 Алюминий Остальное

Основным отличием предлагаемого сплава от прототипа (базового объекта) является то, что натрий, вследствие своей активности, в процессе анодного растворения сплава образует большое количество ионов металла, которые переходят в электролит, оставляя на поверхности анода свободные электроны, что повышает электрохимическую активность сплава, сдвигая значение его стационарного потенциала и потенциала под током в отрицательную сторону.

Действие стронция аналогично действию натрия, однако учитывая существенно меньшую растворимость Sr(OH)2 (приблизительно на два порядка меньшую, чем для NaOH) основного продукта реакции растворения стронция в нейтральных солевых растворах, скорость его перехода из сплава в раствор существенно меньше, чем у натрия, что обеспечивает стабильность поддержания отрицательного значения потенциала как в отсутствии тока, так и под нагрузкой, а также снижение скорости коррозии.

Составы исследованных сплавов в сравнении с прототипом и значения сравнительных параметров для них приведены в табл. 1 и 2.

В качестве сравнительных параметров были выбраны следующие характеристики:

ст потенциал стационарный, В; (Все значения потенциалов приведены относительно насыщенного каломельного электрода);

Vc скорость коррозии при разомкнутой внешней цепи (без тока) по потери веса в 20% растворе KCl, мг/см2;

потенциал электродный при плотности тока 20 мА/см2, В;

Vн скорость коррозии при плотности анодного тока 20 мА/см2 в 20% растворе КСl, мА/см2;

длительность поддержания постоянного потока электронов до потенциала -0,8В при толщине анода 3 мм, ч.

Из представленных данных следует, что предложенный в данном изобретении состав имеет существенные преимущества в значениях электрохимических параметров по сравнению с прототипом (базовым объектом). Увеличение содержания компонентов в предлагаемом сплаве выше верхнего предела и уменьшение их ниже нижнего предела приводит к ухудшению значений электрохимических параметров сплава.

Из представленных экспериментальных данных видно, что предложенный сплав наиболее пригоден для использования в качестве анода солевых химических источников тока. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



СТАЛЬ НА ОСНОВЕ АЛЮМИНИЯ ДЛЯ АНОДОВ СОЛЕВЫХ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА, включающий в себя олово, галлий и свинец, отличающийся тем, что, с целью улучщения электрохимических характеристик, он дополнительно содержит натрий и стронций при следующем соотношении компонентов, мас.

Олово 0,05 0,25

Галлий 0,005 0,1

Свинец 0,005 0,1

Натрий 0,0001 0,01

Стронций 0,0001 0,01

Алюминий Остальное