ЭЛЕКТРОЛИТ ДЛЯ ЛИТИЕВОГО АККУМУЛЯТОРА

ЭЛЕКТРОЛИТ ДЛЯ ЛИТИЕВОГО АККУМУЛЯТОРА


RU (11) 2091916 (13) C1

(51) 6 H01M6/16, H01M10/40 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 20.11.2007 - прекратил действие 

--------------------------------------------------------------------------------

(21) Заявка: 92005861/07 
(22) Дата подачи заявки: 1992.11.12 
(45) Опубликовано: 1997.09.27 
(56) Список документов, цитированных в отчете о поиске: 1. Abraham K.M., J.Power sources, 1985, 14, p. 179 - 191. 2. Заявка Франции N 2589631, кл. H 01 M 10/40, 1987. 3. Патент США N 4956247, кл. H 01 M 10/40, 1990. 
(71) Заявитель(и): Малое предприятие "Наукоемкое производство"; Научно-производственный коллектив "Импульс" 
(72) Автор(ы): Зятькова Л.А.; Афанасьев В.Н.; Грудянов И.И.; Немцов Н.Н.; Пестриков В.Ф.; Величко В.В. 
(73) Патентообладатель(и): Малое предприятие "Наукоемкое производство"; Акционерное общество "Импульс" 

(54) ЭЛЕКТРОЛИТ ДЛЯ ЛИТИЕВОГО АККУМУЛЯТОРА 

Использование: органический электролит для перезаряжаемых литиевых источников тока. Сущность изобретения: электролит представляет собой раствор 0,5-2 гмоль/л гексафторарсената лития в смеси органических растворителей пропиленкарбоната 10-94 об. % 2-метилтетрагидрофурана 5-89 об.% и 2-метилфурана 0,1-5 об.%. Указанный электролит обеспечивает высокую эффективность циклирования при больших плотностях тока. 4 табл. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к электротехнической промышленности и может быть использовано в химических источниках тока, в частности в высокоэнергоемких перезаряжаемых химических источниках тока с литиевым анодом и органическим электролитом.

Известны электролиты на основе раствора гексафторарсената лития в 2-метилтетрагидрофуране или в смеси 2-метилтетрагидрофурана с тетрагидрофураном и добавкой 2-метилфурана [1] имеющие промышленное применение. Однако эти электролиты не достаточно стабильны и склонны к деградации. Улучшение стабильности электролита и повышение эффективности циклирования электродных материалов в достигается [2, 3] при применении растворов гексафторарсената лития в смеси этиленкарбоната или пропиленкарбоната с эфирными растворителями. Hаиболее близким по техническому решению и достигаемым результатам являются электролиты для литиевого аккумулятора [3] (прототип), содержащие гексафторарсенат лития в смеси растворителей, состоящей из пропиленкарбоната и 2-метилтетрагидрофурана. Однако недостатком этих электролитов являются низкие скорости разряда и заряда, так как свойства поверхностной пленки на литии в этом электролите не обеспечивают равномерности протекания процесса растворения осаждения лития по поверхности электрода.

При разработке мощных источников тока стоит задача обеспечения высокой эффективности циклирования литиевого аккумулятора при высоких скоростях разряда и заряда. Для решения этой задачи нами предложен электролит, представляющий собой раствор 0,1-2 гмоль/л гексафторарсената лития в смесевом растворителе, состоящем из 10-94 об. пропиленкарбоната, 5-89 об. 2- метилтетрагидрофурана и 0,1-5 об. 2-метилфурана.

Отличительным от прототипа признаком является дополнительное содержание в смесевом растворителе 2-метилфурана. Большая электрохимическая стабильность используемого растворителя и выравнивающие свойства адсорбционной пленки 2-метилфурана позволяют при использовании электролита предлагаемого состава создать на поверхности литиевого электрода пленку, препятствующую восстановлению растворителя и обеспечивающую высокий выход основного процесса растворения оcаждения лития без образования дендритов. Равномерное протекание процесса по поверхности электрода дает возможность использовать большой интервал значений плотностей тока, при которых осаждение и растворение лития происходит с высокой эффективностью.

Пример 1. Проводили исследование эффективности циклирования литиевого электрода в ячейке объемом 10 мл с двумя литиевыми электродами. Циклирование лития осуществляли после осаждения на никелевой сетке площадью 0,03 см3 5-10- кратного запаса емкости лития, разряжаемой в одном цикле при заданной плотности тока циклирования. Рассчитывали среднюю эффективность циклирования по формуле:



где Qц емкость разряда заряда в одном цикле, K;

Qизб первоначальная избыточная емкость, K;

n число циклов со 100% отдачей по емкости.

Значения эффективности циклирования литиевого электрода при различном составе растворителя, при различной концентрации электролитной соли и добавки 2-метилфурана в зависимости от плотности тока представлены в табл. 1 3.

Пример 2. Измеряли область электрохимической устойчивости электролитов в ячейке с 3-мя разделенными электродными пространствами и деаэрируемой аргоном. Рабочий и вспомогательный электрод были платиновыми. В качестве электрода сравнения служил серебряный электрод в растворе 0,1 М в ацентонитриле. В табл. 4 приведены значения потенциалов разложения электролитов при плотности тока 10-5 А/см2.

Пример 3. Определяли удельную электропроводность исследуемых растворов в двух электродной ячейке с платиновыми электродами, результаты собраны в табл. 4.

Как видно из табл. 1, электролиты на основе смесей пропиленкарбонат-2-метилтетрагидрофуран-2-метилфуран в пределах концентраций компонентов обеспечивают высокую эффективность циклирования (более 90%) при высоких плотностях тока (до 100 мA/см2), тогда как в известных органических электролитах удается отбирать токи не превосходящие 5 мA/см2. Таким образом задача изобретения по сравнению с прототипом решается. Электролиты имеют близкую с прототипом электрохимическую стабильность (табл. 4) и обладают большей электропроводностью.

При содержании 2-метилтетрагидрофурана более 89 об. эффективность циклирования снижается (табл. 1) вследствие сильного уменьшения электропроводности раствора. Использование растворов с содержанием пропиленкарбонта более 94 об. (табл. 1) не позволяет получать токи более 20 мА/см2. Оптимальное количество добавки 2-метилфурана 0,1-5 об. (табл. 3) определяется тем, что при малых концентрациях менее 0,1 об. количество 2-метилфурана недостаточно для полной адсорбции и образования слоя, препятствующего восстановлению растворителя. Ухудшение циклируемости лития при содержании в растворе более 5 об. 2-метилфурана связано с ухудшением стабильности электролита. С выходом за нижнее значение концентрации соли LiAsF6 (менее 0,1 М) снижается эффективность циклирования лития (табл. 2) вследствие значительного уменьшения удельной электропроводности раствора. Верхняя граница концентрации LiAsF6 (более 2 М) связана с увеличением вязкости раствора и снижением эффективности циклирования лития.

Полученные результаты показывают, что предлагаемый электролит для литиевых аккумуляторов обеспечивает высокую эффективность циклирования литиевого аккумулятора при высоких плотностях разрядного и зарядного тока, электрохимически стабилен, имеет высокую электропроводность. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



Электролит для литиевого аккумулятора, содержащий гексафторарсенат лития в смеси растворителей, состоящей из пропиленкарбоната и 2-метилтетрагидрофурана, отличающийся тем, что он дополнительно содержит в смеси растворителей 2-метилфуран при соотношении компонентов, об.

Пропиленкарбонат 10 94

2-Метилтетрагидрофуран 5 89

2-Метилфуран 0,1 5,0л




ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к ЭЛЕКТРОЭНЕРГЕТИКЕ:
Гелиоэнергетика - Солнечные электростанции, Солнечные батареи. Солнечные коллекторы;
Ветроэнергетика - Ветроэнергетические установки. Ветродвигатели;
Волновые электростанции. Гидроэлектростанции;
Термоэлектрические источники тока;
Химические источники тока;
Нетрадиционные устройства и способы получения, преобразования и передачи ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ;
Устройства и способы экономии и сохранения электроэнергии;
Генераторы постоянного электрического тока. Электрические машины.



Устройства и способы получения, преобразования, передачи, экономии и сохранения электрической энергии




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+электрический -генератор".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "генератор" будут найдены слова "генераторы", "ренераторов" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("генератор!").


Солнечные электростанции. Гелиоэнергетика | Ветроэнергетические установки. Ветродвигатели. Ветрогенераторы | Волновые, геотермальные и гидроэлектростанции | Термоэлектрические источники тока | Химические источники тока. Накопители электроэнергии. Батареи и аккумуляторы | Нетрадиционные устройства и способы получения, преобразования и передачи электрической энергии | Устройства и способы экономии и сохранения электроэнергии | Генераторы постоянного и переменного электрического тока. Электрические машины


Рейтинг@Mail.ru