СПОСОБ ЭКСПЛУАТАЦИИ МЕТАЛЛ-ВОДОРОДНОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ В АВТОНОМНОЙ СИСТЕМЕ ЭЛЕКТРОПИТАНИЯ

СПОСОБ ЭКСПЛУАТАЦИИ МЕТАЛЛ-ВОДОРОДНОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ В АВТОНОМНОЙ СИСТЕМЕ ЭЛЕКТРОПИТАНИЯ


RU (11) 2254644 (13) C2

(51) 7 H01M10/44, H01M12/08 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 20.11.2007 - действует 

--------------------------------------------------------------------------------

Документ: В формате PDF 
(21) Заявка: 2003112577/09 
(22) Дата подачи заявки: 2003.04.28 
(24) Дата начала отсчета срока действия патента: 2003.04.28 
(43) Дата публикации заявки: 2004.11.20 
(45) Опубликовано: 2005.06.20 
(56) Список документов, цитированных в отчете о поиске: SU 1576946 A1, 07.07.1990. JP 10-064604 А, 06.03.1998. US 6465988 В2, 15.10.2002. US 5629601 А, 13.05.1997. 
(72) Автор(ы): Коротких В.В. (RU) 
(73) Патентообладатель(и): Федеральное государственное унитарное предприятие "Научно-производственное объединение прикладной механики им. академика М.Ф. Решетнева" (RU) 
Адрес для переписки: 662972, ЗАТО Железногорск, Красноярский край, г. Железногорск, ул. Ленина, 52, Р.П. Туркеничу 

(54) СПОСОБ ЭКСПЛУАТАЦИИ МЕТАЛЛ-ВОДОРОДНОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ В АВТОНОМНОЙ СИСТЕМЕ ЭЛЕКТРОПИТАНИЯ

Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации металл-водородных аккумуляторных батарей преимущественно в автономных системах электропитания. Техническим результатом изобретения является повышение ресурсных характеристик и надежности эксплуатации металл-водородной аккумуляторной батареи. Согласно изобретению способ эксплуатации аккумуляторной батареи в автономной системе электропитания заключается в проведении заряд-разрядных циклов, «обходе» аккумуляторов, имеющих меньшую емкость разрядными байпасными диодами и контроле напряжения каждого аккумулятора. Заряд аккумуляторной батареи начинают с контроля напряжения разомкнутой цепи каждого аккумулятора и при наличии аккумуляторов с напряжением менее стандартной величины их электрохимической пары штатный заряд аккумуляторной батареи проводят после предварительного подзаряда малым током, исключающим образование взрывоопасной концентрации кислород-водородной смеси, далее повторно контролируют напряжение разомкнутой цепи аккумуляторов и при отсутствии аккумуляторов с напряжением менее стандартной величины электрохимической пары включают штатный заряд, в противном случае подзаряд повторяют. Кроме того, повторное измерение напряжения разомкнутой цепи аккумуляторов проводят через 15-20 минут после окончания подзаряда аккумуляторной батареи малым током. 1 з.п. ф-лы, 1 ил. 




ОПИСАНИЕ ИЗОБРЕТЕНИЯ


Предлагаемое изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации металл-водородных аккумуляторных батарей преимущественно в автономных системах электропитания ИСЗ.

В процессе эксплуатации аккумуляторной батареи происходит разбаланс аккумуляторов по емкости. Это может быть следствием разных условий охлаждения отдельных аккумуляторов в батарее или наличия в отдельных аккумуляторах внутренних микрошунтов. Поэтому появление в процессе разряда аккумуляторной батареи полностью разряженного аккумулятора, когда батарея в целом имеет достаточную емкость, вполне реально и неоднократно подтверждалось на практике. 

При дальнейшем разряде аккумуляторной батареи этот аккумулятор подвергается переполюсовке, что может привести к выделению в нем кислорода. Для исключения выделения кислорода мощность водородного электрода предусматривают выше мощности положительного электрода, либо в аккумулятор вводят избыточный (балластный) водород (см. главу XI, Б.И. Центер, Н.Ю. Лызлов "Металл-водородные электрические системы", Ленинград "Химия" Ленинградское отделение, 1989 г., [1]).

Химические реакции на положительном и отрицательном электродах, на примере никель-водородного аккумулятора, при его переразряде имеют следующий вид.

На положительном электроде: 2NiOOH+2H2O+2e2Ni(OH) 2+2OH-.

На отрицательном электроде: 

- при наличии балластного водорода 1/2Н2+ОН -Н 2О+е;

- при отсутствии водорода в аккумуляторе 2(OH)-2е+1/2O 2+Н2O.

Однако в современных аккумуляторных батареях существующее требование по повышению их удельных энергетических характеристик вынуждает разработчиков аккумуляторных батарей (полностью или частично) пренебрегать известными приемами.

В настоящее время на практике в большинстве случаев разряд батареи прекращают по минимальному напряжению аккумуляторов, что снижает эффективность использования аккумуляторной батареи в целом.

Известен способ эксплуатации металл-водородной аккумуляторной батареи путем проведения зарядно-разрядных циклов и шунтирования неисправного аккумулятора, отличающийся тем, что величину сопротивления шунтирующей аккумулятор цепи выбирают из условия

R<0,3I,

где I - максимальная величина тока через аккумулятор (см. авторское свидетельство N1396881, Н 01 М 10/44).

Известен также способ эксплуатации металл-водородной аккумуляторной батареи, усовершенствующий способ по авторскому свидетельству N1396881, по которому контролируют наличие емкости в аккумуляторной батарее и минимальное напряжение аккумуляторов, а шунтирование соответствующего аккумулятора проводят при наличии емкости в батарее по минимальному напряжению этого аккумулятора (авторское свидетельство №1795848, Н 01 М 10/44).

Недостатком этих способов является определенное усложнение конструкции аккумуляторной батареи и автономной системы электропитания в целом, что не всегда целесообразно. Кроме того, снижение текущей емкости аккумулятора не свидетельствует однозначно о необратимом его отказе. Такой аккумулятор вполне может быть восстановлен полностью или частично специальными профилактическими циклами.

Наиболее близким техническим решением является способ эксплуатации аккумуляторной батареи, предусматривающий "обход" отказавшего в процессе эксплуатации аккумулятора посредством диодных /байпасных/ цепей /см. W.I.Billerbeck, W.E.Baker "The desing of reliable power systems for communi ca-tions satelite", Comsat Laboratories Clarksbufg, AIAA/NASA Spacesyst. Technol.Conf. 14/8, 5-7 june, 1984/, который выбран в качестве прототипа.

Недостатком известного способа является то, что в процессе разряда аккумуляторной батареи и полном разряде какого-либо аккумулятора наличие падения напряжения на диодах /0,4-0,6/В приложенного к отказавшему аккумулятору в обратной полярности способствует протеканию в последнем электрохимических реакций, связанных с выделением кислорода, что может привести к его окончательному отказу (см. главу XI, [1]).

Тем не менее, наличие диодов ограничивает степень переполюсовки аккумулятора. 

Целью предлагаемого изобретения является повышение ресурсных характеристик и надежности эксплуатации металл-водородной аккумуляторной батареи.

Поставленная цель достигается тем, что заряд аккумуляторной батареи начинают с контроля напряжения разомкнутой цепи каждого аккумулятора и при наличии аккумуляторов с напряжением менее стандартной величины их электрохимической пары заряд аккумуляторной батареи проводят после предварительного подзаряда малым током, исключающим образование взрывоопасной концентрации кислород-водородной смеси в данной конструкции аккумулятора аккумуляторной батареи, до устранения выделившегося при переполюсовке кислорода, далее повторно контролируют напряжение разомкнутой цепи (в дальнейшем НРЦ) аккумуляторов и при отсутствии аккумуляторов с напряжением менее стандартной величины электрохимической пары включают штатный режим заряда, в противном случае подзаряд повторяют.

Кроме того, повторное измерение напряжения разомкнутой цепи аккумуляторов проводят через 15-20 минут после окончания подзаряда аккумуляторной батареи малым током

Действительно, при появлении в аккумуляторе кислорода (при полном отсутствии водорода) происходит его накапливание и в случае последующего активного заряда аккумуляторной батареи и интенсивного выделения водорода в аккумуляторе образуются локальные зоны со взрывоопасной смесью. Образование таких зон приводит к микровзрывам в аккумуляторе, а микровзрывы - к внутренним шунтам в аккумуляторе. В результате данный аккумулятор приобретает повышенный саморазряд и в процессе разряда аккумуляторной батареи вновь переполюсовывается. С каждым разом процесс все более усугубляется. 

Исключить внутренние микровзрывы можно дозированной подачей зарядного тока (дозированным выделением водорода в аккумуляторе), исключающим появление локальных зон со взрывоопасной смесью.

Величина восстановительного тока подзаряда зависит от конкретной конструкции аккумулятора и должна быть определена на этапе разработки аккумуляторной батареи.

В процессе заряда переполюсованного аккумулятора наличие кислорода в аккумуляторе препятствует восстановлению напряжения разомкнутой цепи аккумулятора до стандартного значения данной электрохимической пары.

Поэтому за порог, гарантирующий отсутствие кислорода в аккумуляторе, предлагается принять НРЦ не менее стандартного значения.

В качестве примера, стандартное значение НРЦ для никель-водородного аккумулятора составляет 1,267 В (см. [1], Таблица 1.1).

Следует отметить, что процесс взаимодействия кислорода с выделившимся водородом может происходить относительно длительно, однако времени 15-20 минут вполне достаточно для завершения процесса в полном объеме.

На чертеже приведена функциональная схема автономной системы электропитания, поясняющая работу по предлагаемому способу.

Устройство содержит солнечную батарею 1, подключенную к нагрузке 2 через преобразователь напряжения 3, аккумуляторную батарею 4, подключенную через зарядный преобразователь 5 к солнечной батарее 1, а через разрядный преобразователь 6 ко входу выходного фильтра преобразователя напряжения 3.

При этом нагрузка 2 в своем составе содержит бортовую ЭВМ, устройство телеметрии и командно-измерительную радиолинию.

Параллельно аккумуляторной батарее 4 подключено устройство контроля напряжения аккумуляторов 7, связанное входом с аккумуляторами аккумуляторной батареи 4, а выходом с нагрузкой 2 (с бортовой ЭВМ).

В цепи заряда-разряда аккумуляторной батареи установлен измерительный шунт 8.

Зарядный преобразователь состоит из регулирующего ключа 9, управляемого схемой управления 10, вольтодобавочного узла, выполненного на трансформаторе Тр, транзисторах Т1 и Т2, выпрямителя на диодах D1 и D2.

Разрядный преобразователь 6 состоит из регулирующего ключа 11, управляемого схемой управления 12.

Преобразователь напряжения 3 состоит из регулирующего ключа 13, управляемого схемой управления 14, входного фильтра С1 и выходного фильтра на диоде D, дросселе L и конденсаторе С.

Схемы управления преобразователями 10, 12, 14 выполнены в виде широтно-импульсных модуляторов, входом подключенных к шинам стабилизируемого напряжения. Схема управления 10 зарядного преобразователя 5 дополнительно связана с измерительным шунтом 8 и нагрузкой 2 (командно-измерительной радиолинией).

Устройство работает следующим образом.

В процессе эксплуатации аккумуляторная батарея 5 работает в основном (98% ресурса) в режиме хранения и периодических дозарядов от солнечной батареи 1 через зарядный стабилизированный преобразователь 5. Такой режим работы позволяет содержать ее в постоянной готовности на случай аварийных ситуаций (потеря ориентации ИСЗ на солнце) или на прохождение штатных теневых участков орбиты.

Питание нагрузки 2 осуществляется при этом от солнечной батареи 1 через преобразователь напряжения 3.

При прохождении теневых участков орбиты, либо при нарушении ориентации нагрузка 2 питается от аккумуляторной батареи 4 через разрядный преобразователь 6.

Устройство контроля напряжения аккумуляторов 7 контролирует напряжение аккумуляторов и передает информацию об их состоянии в нагрузку (бортовую ЭВМ).

В бортовую ЭВМ «прошивается» программа по следующему алгоритму. 

1. Если в процессе разряда аккумуляторной батареи зафиксировано снижение напряжения какого-либо аккумулятора ниже минимального уровня, по команде бортовой ЭВМ блокируется включение зарядного преобразователя.

2. После появления избыточного тока солнечной батареи (выход ИСЗ из теневого участка орбиты) контролируется НРЦ каждого аккумулятора и при напряжении на каком-либо аккумуляторе менее стандартной величины электрохимической пары для данного типа аккумуляторов зарядный преобразователь по команде с бортовой ЭВМ включается на заряд аккумуляторной батареи малым током до достижения напряжения на всех аккумуляторах величины выше стандартной величины электрохимической пары для данного типа аккумуляторов аккумуляторной батареи, иначе по команде с бортовой ЭВМ включается штатный режим заряда.

3. После достижения напряжения на всех аккумуляторах величины выше стандартной величины электрохимической пары для данного типа аккумуляторов аккумуляторной батареи по команде с бортовой ЭВМ заряд отключается, контролируется величина НРЦ каждого аккумулятора (сразу либо по истечении 15-20 минут). 

4. При напряжении на каком-либо аккумуляторе не менее стандартной величины электрохимической пары для данного типа аккумуляторов зарядный преобразователь по команде с бортовой ЭВМ включается в штатный режим заряда, иначе повторяется работа по п.3.

Таким образом, предлагаемый способ позволяет исключить появление локальных зон со взрывоопасной смесью, а следовательно, исключить внутренние микровзрывы в аккумуляторе, что повышает ресурсные характеристики и надежность эксплуатации металл-водородной аккумуляторной батареи, а следовательно, повышает надежность автономной системы электропитания и ИСЗ в целом.




ФОРМУЛА ИЗОБРЕТЕНИЯ


1. Способ эксплуатации металл-водородной аккумуляторной батареи в автономной системе электропитания, заключающийся в проведении заряд-разрядных циклов, «обходе» аккумуляторов, имеющих меньшую емкость, разрядными байпасными диодами и контроле напряжения каждого аккумулятора, отличающийся тем, что заряд аккумуляторной батареи начинают с контроля напряжения разомкнутой цепи каждого аккумулятора и при наличии аккумуляторов с напряжением менее стандартной величины их электрохимической пары штатный заряд аккумуляторной батареи проводят после предварительного подзаряда малым током, исключающим образование взрывоопасной концентрации кислород-водородной смеси, до достижения напряжением на всех аккумуляторах величины выше стандартной величины их электрохимической пары, далее повторно контролируют напряжение разомкнутой цепи аккумуляторов и при отсутствии аккумуляторов с напряжением менее стандартной величины их электрохимической пары включают штатный заряд, в противном случае подзаряд повторяют.

2. Способ по п.1, отличающийся тем, что повторное измерение напряжения разомкнутой цепи аккумуляторов проводят через 15-20 мин после окончания подзаряда аккумуляторной батареи малым током.








ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к ЭЛЕКТРОЭНЕРГЕТИКЕ:
Гелиоэнергетика - Солнечные электростанции, Солнечные батареи. Солнечные коллекторы;
Ветроэнергетика - Ветроэнергетические установки. Ветродвигатели;
Волновые электростанции. Гидроэлектростанции;
Термоэлектрические источники тока;
Химические источники тока;
Нетрадиционные устройства и способы получения, преобразования и передачи ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ;
Устройства и способы экономии и сохранения электроэнергии;
Генераторы постоянного электрического тока. Электрические машины.



Устройства и способы получения, преобразования, передачи, экономии и сохранения электрической энергии




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+электрический -генератор".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "генератор" будут найдены слова "генераторы", "ренераторов" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("генератор!").


Солнечные электростанции. Гелиоэнергетика | Ветроэнергетические установки. Ветродвигатели. Ветрогенераторы | Волновые, геотермальные и гидроэлектростанции | Термоэлектрические источники тока | Химические источники тока. Накопители электроэнергии. Батареи и аккумуляторы | Нетрадиционные устройства и способы получения, преобразования и передачи электрической энергии | Устройства и способы экономии и сохранения электроэнергии | Генераторы постоянного и переменного электрического тока. Электрические машины


Рейтинг@Mail.ru