ТЕРМОЭЛЕКТРОННЫЙ ПРЕОБРАЗОВАТЕЛЬ ТЕПЛОВОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ

ТЕРМОЭЛЕКТРОННЫЙ ПРЕОБРАЗОВАТЕЛЬ ТЕПЛОВОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ


RU (11) 2124782 (13) C1

(51) 6 H01J45/00, G21D7/04 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 20.11.2007 - прекратил действие 

--------------------------------------------------------------------------------

(21) Заявка: 96113699/09 
(22) Дата подачи заявки: 1996.07.05 
(45) Опубликовано: 1999.01.10 
(56) Список документов, цитированных в отчете о поиске: Shock A. Effect of magnetic fields of thermionic power generation. J. Appl. Phys., 31, n 11, 1960, p. 1978 - 1981. Маргулис Н.Д. Термоэлектронный (плазменный) преобразователь энергии. - М.: Госатомиздат, 1961. RU 2002335 C1, 30.10.93. RU 2063089 C1, 27.06.96. SU 1455930 A1, 06.03.86. DE 2553872 A1, 02.06.77. DE 2437045 A1, 12.02.76. 
(71) Заявитель(и): Маевский Владимир Александрович 
(72) Автор(ы): Маевский В.А. 
(73) Патентообладатель(и): Маевский Владимир Александрович 
Адрес для переписки: 111402 Москва, ул.Кетчерская 2-5-34, Маевскому В.А. 

(54) ТЕРМОЭЛЕКТРОННЫЙ ПРЕОБРАЗОВАТЕЛЬ ТЕПЛОВОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ 

Использование: в качестве источников электрической энергии в наземных и космических условиях. Технический результат заключается в создании условия для повторного использования тепла, выделяющегося на аноде для подвода к катоду следующего за ним элемента. Термоэлектронный преобразователь содержит катод, выполненный из последовательно расположенных участков выпуклой цилиндрической поверхности, анод, выполненный из последовательно расположенных участков вогнутой цилиндрической поверхности, экранирующие пластины на границах участков цилиндрических поверхностей, формирователи магнитного поля, напряженность которого перпендикулярна поверхности электродов, причем температура анода выше температуры катода. 4 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к технике преобразования тепловой энергии в электрическую, а более конкретно к прямому преобразованию тепла термоэмиссионным способом, и предназначено для использования в качестве источников электрической энергии в наземных и космических установках.

Известен термоэмиссионный преобразователь тепловой энергии в электрическую, содержащий подогреваемый катод и охлаждаемый анод, разделенные межэлектродным зазором [1].

Недостатком известного преобразователя является низкий КПД из-за отсутствия возможности повторного использования тепла, выделяющегося на аноде.

Наиболее близким по технической сущности и достигаемому результату является термоэлектронный преобразователь тепловой энергии в электрическую, содержащий катод, анод и формирователь магнитного поля [2].

Известное устройство также не обеспечивает генерации электрической энергии в преобразователе при температуре анода, большей температуры катода.

Задачей изобретения является обеспечение генерации электрической энергии в преобразователе при температуре анода, большей температуры катода, и использование тепла, выделяющегося на аноде, для подогрева катода предыдущего или последующего элемента.

Данная задача решается таким образом, что в термоэлектронном преобразователе тепловой энергии в электрическую, содержащем катод, анод и формирователь магнитного поля, катод выполнен в виде пластины, образованной последовательно расположенными участками выпуклой цилиндрической поверхности, анод выполнен в виде пластины, образованной последовательно расположенными участками вогнутой цилиндрической поверхности, на границах участков установлены экраны в виде плоских пластин, экранирующих дугу цилиндрической поверхности в диапазоне 15 - 90o, причем формирователь магнитного поля расположен таким образом, что напряженность магнитного поля перпендикулярна поверхности электродов.

На фиг. 1 представлена схема преобразователя, выполненного по данному изобретению; на фиг. 2 - траектории эмиттированных электронов и условия захвата электронов электродом; на фиг. 3 - схема для вычислений плотности тока; на фиг. 4 - характер изменения плотности тока по длине электрода.

Преобразователь работает следующим образом.

Рассмотрим электроны, эмиттированные в точке A, расположенной на вогнутой цилиндрической поверхности с радиусом R. Если бы точка A была расположена на наклонной поверхности, касательной к цилиндру в точке A, то, как известно, плотность тока с элемента поверхности в точке A равнялась бы j = j0sin, где - угол наклона напряженности магнитного поля к эмиттирующей поверхности [2]. Однако в рассматриваемом случае дополнительно захватываются электроны, чья траектория проходит через область 1 (между граничными траекториями 1 и 2), и можно утверждать, что эффективный эфф1< и соответственно j1<j (jo - плотность тока эмиссии).

Если точка A расположена на выпуклой поверхности, то захват электронов эмиттером снижается, так как граница участка электрода, который захватывает эмиттированные электроны, лежит ниже границы соответствующего плоского наклонного электрода с углом к напряженности магнитного поля.

Если при плоском электроде электроны, проходящие через область II, захватываются эмиттером, то при выпуклом не захватываются и покидают электрод, т.е. эфф1< , j2>j>j1

На участке соприкосновения двух смежных цилиндров размером rЛ, где rЛ - радиус Лармора, картина усложняется; однако, если их заэкранировать плоскими эмиттирующими пластинами из того же материала, то они не внесут дополнительной разницы в ток, так как компенсируют друг друга.

После уточнения действительного распределения тока одна из пластин в зависимости от соотношения с плотностью тока в центральной части может быть удалена.

Таким образом, если в термоэлектронном диоде в качестве электродов используются пластины, образованные участками с выпуклыми или вогнутыми поверхностями, то при наложении магнитного поля, перпендикулярного поверхности электродов, при равных температурах электродов в цепи появляется ток. Величина тока зависит от величины напряженности магнитного поля, т.е. определяется соотношением rЛ/R.

При малых rЛ/R величина зон I и II уменьшается и эффект также уменьшается; с ростом rЛ эффект увеличивается, однако, с приближением rЛ/R к 1 рассмотренная схема перестает быть правомерной.

При проведении оценки величины тока между изотермическими электродами для величины rЛ/R 0,2 средняя плотность тока составляет 0,2 jo при экранировании дуги = 60 - 90o; при экранировании дуги от 45 - 90o результирующий ток уменьшается до 0,1 jo.

Наличие тока в цепи термоэлектронного диода с одинаковыми потенциалами диода независимо от соотношения температур эмиттера коллектора является необходимым и достаточным условием для преобразования тепловой энергии в электрическую.

Ситуация принципиально не меняется, если температура анода выше температуры катода, но не превышает некоторой критической температуры TAKP > TK.

При уровне температуры TK = 1273K величина TAKP может составлять 150K.

В этом случае тепло, выделяющееся на аноде, известными механизмами (теплопроводностью, лучеиспусканием) передается на катод своего или следующего элемента и повторно используется в цикле.

Литература

1. Маргулис Н.Д. Термоэлектронный (плазменный) преобразователь энергии. - Госатомиздат, 1961.

2. Shock A. Effect of magnetic fields of Thermionic power generator. J. Appl. Phys, 31, N 11, 1960, 1978 - 1981. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



Термоэлектронный преобразователь тепловой энергии в электрическую, содержащий катод, анод и формирователь магнитного поля, отличающийся тем, что катод выполнен в виде пластины, образованной последовательно расположенными участками выпуклой цилиндрической поверхности, анод выполнен в виде пластины, образованной последовательно расположенными участками вогнутой цилиндрической поверхности, на границах участков установлены экраны в виде плоских пластин, экранирующих дугу цилиндрической поверхности в диапазоне 45 - 90o, причем формирователь магнитного поля расположен так, что напряженность магнитного поля перпендикулярна поверхности электродов.




ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к ЭЛЕКТРОЭНЕРГЕТИКЕ:
Гелиоэнергетика - Солнечные электростанции, Солнечные батареи. Солнечные коллекторы;
Ветроэнергетика - Ветроэнергетические установки. Ветродвигатели;
Волновые электростанции. Гидроэлектростанции;
Термоэлектрические источники тока;
Химические источники тока;
Нетрадиционные устройства и способы получения, преобразования и передачи ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ;
Устройства и способы экономии и сохранения электроэнергии;
Генераторы постоянного электрического тока. Электрические машины.



Устройства и способы получения, преобразования, передачи, экономии и сохранения электрической энергии




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+электрический -генератор".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "генератор" будут найдены слова "генераторы", "ренераторов" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("генератор!").


Солнечные электростанции. Гелиоэнергетика | Ветроэнергетические установки. Ветродвигатели. Ветрогенераторы | Волновые, геотермальные и гидроэлектростанции | Термоэлектрические источники тока | Химические источники тока. Накопители электроэнергии. Батареи и аккумуляторы | Нетрадиционные устройства и способы получения, преобразования и передачи электрической энергии | Устройства и способы экономии и сохранения электроэнергии | Генераторы постоянного и переменного электрического тока. Электрические машины


Рейтинг@Mail.ru