СПОСОБ ОБЕСПЕЧЕНИЯ ФУНКЦИОНИРОВАНИЯ ТЕРМОЭЛЕКТРИЧЕСКОЙ БАТАРЕИ

СПОСОБ ОБЕСПЕЧЕНИЯ ФУНКЦИОНИРОВАНИЯ ТЕРМОЭЛЕКТРИЧЕСКОЙ БАТАРЕИ


RU (11) 2270495 (13) C2

(51) МПК
H01L 35/28 (2006.01) 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 20.11.2007 - прекратил действие, но может быть восстановлен 

--------------------------------------------------------------------------------

Документ: В формате PDF 
(21) Заявка: 2003134613/28 
(22) Дата подачи заявки: 2003.11.28 
(24) Дата начала отсчета срока действия патента: 2003.11.28 
(43) Дата публикации заявки: 2005.05.10 
(45) Опубликовано: 2006.02.20 
(56) Список документов, цитированных в отчете о поиске: Б.С.ПОЗДНЯКОВ, Е.А.КОПТЕЛОВ. Термоэлектрическая энергетика. - М.: Атомиздат, с.88, рис.5.13. US 5038569 А, 13.08.1991. RU 2010396 C1, 30.03.1994. RU 2098889 C1, 10.12.1997. 
(72) Автор(ы): Исмаилов Тагир Абдурашидович (RU); Вердиев Микаил Гаджимагомедович (RU); Евдулов Олег Викторович (RU) 
(73) Патентообладатель(и): Дагестанский государственный технический университет (ДГТУ) (RU) 
Адрес для переписки: 367015, г.Махачкала, пр. имама Шамиля, 70, ДГТУ, отдел интеллектуальной собственности 

(54) СПОСОБ ОБЕСПЕЧЕНИЯ ФУНКЦИОНИРОВАНИЯ ТЕРМОЭЛЕКТРИЧЕСКОЙ БАТАРЕИ

Изобретение относится к термоэлектрическому приборостроению. Сущность: последовательно соединяют в электрическую цепь посредством коммутационных пластин полупроводниковые термоэлементы, каждый из которых образован двумя ветвями, изготовленными из полупроводника соответственно р- и n-типа. Коммутацию ветвей термоэлементов осуществляют встык на одних концах коммутационных пластин. Теплоотвод и теплоподвод к коммутационным пластинам осуществляют со всех их свободных поверхностей через сечения. Отношение сечений теплоподводящих и теплоотводящих коммутационных пластин определяют из соотношения 



где S1, S2 - сечения соответственно теплоподводящих и теплоотводящих пластин; , , - соответственно коэффициент преобразования энергии термоэлектрической батареи, отношение длин свободных частей коммутационных пластин и отношение их перепадов температур термоэлементов и коммутационных пластин с теплоподводящей и теплоотводящей средами, следствием чего является повышение эффективности функционирования термоэлектрической батареи. 1 ил. 




ОПИСАНИЕ ИЗОБРЕТЕНИЯ


Изобретение относится к термоэлектрическому приборостроению, в частности к способам обеспечения функционирования термоэлектрических батарей (ТЭБ).

Известен способ обеспечения функционирования термоэлектрической батареи, описанный в [1].

Способ состоит в последовательном соединении в электрическую цепь посредством коммутационных пластин, полупроводниковых термоэлементов, каждый из которых образован двумя ветвями, изготовленными из полупроводника соответственно р- и n-типа, подводе тепла к одним, например четным, коммутационным пластинам, и отводе тепла от других, например нечетных, коммутационных пластин. Причем подвод и отвод тепла к коммутационным пластинам производятся через теплопереходы, выполненные из высокотеплопроводного диэлектрика, а термоэлементы имеют П-образную форму, где вертикальные элементы - р- и n-ветви, а горизонтальные - коммутационные пластины как в термоэлектрических батареях холодильников, так и в термоэлектрических генераторах. 

Недостатками данного способа являются наличие механических напряжений, обусловленных биметаллическим эффектом, значительных электрических и тепловых сопротивлений (коммутационных пластин и теплопереходов), теплопритоков от горячих контактов к холодным по межтермоэлементным промежуткам, снижающих эффективность функционирования ТЭБ, а также затруднение эффективного теплообмена термоэлементов с соответствующими средами.

Наиболее близким к заявленному является способ обеспечения функционирования термоэлектрической батареи, заключающийся в последовательном соединении в электрическую цепь посредством коммутационных пластин полупроводниковых термоэлементов, каждый из которых образован двумя ветвями, изготовленными из полупроводника соответственно р- и n-типа, причем коммутацию ветвей термоэлементов осуществляют встык на одних концах коммутационных пластин, при этом теплоотвод и теплоподвод к коммутационным пластинам осуществляют со всех их свободных поверхностей через сечения, описанные в источниках [2, 3].

Недостатком известного способа является недостаточная эффективность теплообмена с теплоподводящей и теплоотводящей средами.

Задачей, на решение которой направлено изобретение, является создание способа функционирования термоэлектрической батареи, обеспечивающего улучшение теплообмена контактов ветвей термоэлементов и коммутационных пластин с теплоподводящей и теплоотводящей средами, следствием чего является повышение эффективности функционирования термоэлектрической батареи.

Решение поставленной задачи заключается в том, что в способе обеспечения функционирования термоэлектрический батареи, заключающемся в последовательном соединении в электрическую цепь посредством коммутационных пластин полупроводниковых термоэлементов, каждый из которых образован двумя ветвями, изготовленными из полупроводника соответственно р- и n-типа, причем коммутацию ветвей термоэлементов осуществляют встык на одних концах коммутационных пластин, при этом теплоотвод и теплоподвод к коммутационным пластинам осуществляют со всех их свободных поверхностей через сечения, отношение сечений теплоподводящих и теплоотводящих коммутационных пластин определяют из соотношения 



где, S1, S2 - сечения соответственно теплоподводящих и теплоотводящих пластин;

, , - соответственно коэффициент преобразования энергии термоэлектрической батареи, отношение длин свободных частей коммутационных пластин и отношение их перепадов температур.

Изобретение поясняется чертежом, где схематически изображена термоэлектрическая батарея (ТЭБ), в которой реализован заявленный способ.

ТЭБ содержит ветви 1 и 2 термоэлементов (1 - ветвь термоэлемента, изготовленная из полупроводника р-типа проводимости, 2 - ветвь термоэлемента, изготовленная из полупроводника n-типа проводимости) и коммутационные пластины 3, 4 (3 - четная коммутационная пластина, 4 - нечетная коммутационная пластина ТЭБ в виде прямоугольного параллелепипеда). Контакт р-типа - коммутационная пластина - ветвь n-типа осуществлен таким образом, что коммутационные пластины 3 выступают за одну поверхность структуры, образованной ветвями ТЭБ, а коммутационные пластины 4 - за другую.

В случае работы ТЭБ в режиме термоэлектрического холодильника при прохождении через ТЭБ постоянного электрического тока, подаваемого от источника электрической энергии, между коммутационными пластинами 3 и 4, представляющими собой контакты ветвей р- и n-типа 1 и 2, возникает разность температур, обусловленная выделением и поглощением теплоты Пельтье. При указанной на чертеже полярности электрического тока происходит нагрев нечетных коммутационных пластин 3 (в данном случае представляющих собой горячие контакты ТЭБ) и охлаждение четных 4 (представляющих собой холодные контакты ТЭБ). Если при этом за счет теплоотвода температура коммутационных пластин 3 поддерживается на постоянном уровне, то температура коммутационных пластин 4 понизится до некоторого определенного значения. При заданном электрическом токе величина снижения температуры на коммутационных пластинах 4 будет зависеть от тепловой нагрузки на них. Тепловая нагрузка складывается из теплопритока из охлаждаемой среды, тепла от горячих спаев, обусловленного теплопроводностью образующих ТЭБ ветвей, теплоты Джоуля.

В режиме генерации электрической энергии при наличии источника тепла - среды, нагревающего, например, коммутационные пластины 3, и среды, рассеивающей тепло с коммутационных пластин 4, между коммутационными пластинами 3 и 4 устанавливается некоторая разность температур. При наличии такой разности температур между коммутационными пластинами 3 и 4, являющимися контактами ветвей р- и n-типа 1 и 2, возникает разность потенциалов - термо-э.д.с., обусловленная эффектом Зеебека. При замыкании крайних коммутационных пластин 3 и 4 на определенную электрическую нагрузку в образовавшейся цепи возникает постоянный электрический ток. Величина протекающего в цепи электрического тока зависит от значения термо-э.д.с., которая в свою очередь зависит от коэффициента термо-э.д.с. термоэлектрического материала, числа термоэлементов в ТЭБ, разности температур между коммутационными пластинами 3 и 4 и величины электрической нагрузки.

Источники информации

1. А.И.Бурштейн. Физические основы расчета полупроводниковых термоэлектрических устройств. - М.: Физматгиз, 1962.

2. Б.С.Поздняков, Е.А.Коптелов. Термоэлектрическая энергетика. - М.: Атомиздат, с.88, рис.5.13.

3. Патент США 5038569, опубл. 13.08.1991.




ФОРМУЛА ИЗОБРЕТЕНИЯ


Способ обеспечения функционирования термоэлектрической батареи, заключающийся в последовательном соединении в электрическую цепь посредством коммутационных пластин полупроводниковых термоэлементов, каждый из которых образован двумя ветвями, изготовленными из полупроводника соответственно р- и n-типа, причем коммутацию ветвей термоэлементов осуществляют встык на одних концах коммутационных пластин, при этом теплоотвод и теплоподвод к коммутационным пластинам осуществляют со всех их свободных поверхностей через сечения, отличающийся тем, что отношение сечений теплоподводящих и теплоотводящих коммутационных пластин определяют из соотношения:



где S1, S2 - сечения соответственно теплоподводящих и теплоотводящих коммутационных пластин; , , - соответственно коэффициент преобразования энергии термоэлектрической батареи, отношение длин свободных частей коммутационных пластин и отношение их перепадов температур.





ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к ЭЛЕКТРОЭНЕРГЕТИКЕ:
Гелиоэнергетика - Солнечные электростанции, Солнечные батареи. Солнечные коллекторы;
Ветроэнергетика - Ветроэнергетические установки. Ветродвигатели;
Волновые электростанции. Гидроэлектростанции;
Термоэлектрические источники тока;
Химические источники тока;
Нетрадиционные устройства и способы получения, преобразования и передачи ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ;
Устройства и способы экономии и сохранения электроэнергии;
Генераторы постоянного электрического тока. Электрические машины.



Устройства и способы получения, преобразования, передачи, экономии и сохранения электрической энергии




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+электрический -генератор".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "генератор" будут найдены слова "генераторы", "ренераторов" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("генератор!").


Солнечные электростанции. Гелиоэнергетика | Ветроэнергетические установки. Ветродвигатели. Ветрогенераторы | Волновые, геотермальные и гидроэлектростанции | Термоэлектрические источники тока | Химические источники тока. Накопители электроэнергии. Батареи и аккумуляторы | Нетрадиционные устройства и способы получения, преобразования и передачи электрической энергии | Устройства и способы экономии и сохранения электроэнергии | Генераторы постоянного и переменного электрического тока. Электрические машины


Рейтинг@Mail.ru