СПОСОБ ВЫРАБОТКИ ЭЛЕКТРОЭНЕРГИИ

СПОСОБ ВЫРАБОТКИ ЭЛЕКТРОЭНЕРГИИ


RU (11) 2147692 (13) C1

(51) 7 F02C3/28, H01M8/06 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 13.11.2007 - действует 

--------------------------------------------------------------------------------

(21) Заявка: 96100851/06 
(22) Дата подачи заявки: 1996.01.19 
(24) Дата начала отсчета срока действия патента: 1996.01.19 
(31) Номер конвенционной заявки: 0070/95 
(32) Дата подачи конвенционной заявки: 1995.01.20 
(33) Страна приоритета: DK 
(45) Опубликовано: 2000.04.20 
(56) Список документов, цитированных в отчете о поиске: "Evaluation of Advanced Gas Tyrbine Cycles", Final report, Fluor Daniel Inc, Irvine, CA, август 1993. WO 92/07392 A, 30.04.92. EP 0246649 A1, 25.11.87. EP 0233549 A1, 26.08.87. RU 2011876 C1, 21.09.87. SU 466343 A, 26.06.75. 
(71) Заявитель(и): Хальдор Топсеэ А/С (DK) 
(72) Автор(ы): Поуль Рудбек (DK); Ким Аасберг-Петерсен (DK); Зузанне Лэгсгаард Ергенсен (DK); Поуль Эрик Хейлунд Нильсен (DK) 
(73) Патентообладатель(и): Хальдор Топсеэ А/С (DK) 
Адрес для переписки: 103064, Москва, ул.Казакова 16, НИИР-Канцелярия "Патентные поверенные Квашнин, Сапельников и Партнеры", Сапельникову Д.А. 

(54) СПОСОБ ВЫРАБОТКИ ЭЛЕКТРОЭНЕРГИИ 

Изобретение относится к технологии выработки электроэнергии в химически рекуперативном цикле с использованием турбин, работающих на газах. Предлагается способ выработки электроэнергии, включающий эндотермический каталитический паровой риформинг углеводородного сырья, отвод газообразного продукта риформинга, сгорания последнего сжатым воздухом с последующим расширением газового продукта сгорания, дополнительное сгорание отходящего газа упомянутого расширения газообразным продуктом риформинга с последующим расширением получаемого при этом газообразного продукта сгорания и подачей отходящего газа расширения на указанный эндотермический каталитический паровой риформинг и отвод отработанного отходящего газа с упомянутого парового риформинга, при этом отличительная особенность заключается в том, что эндотермический каталитический паровой риформинг осуществляют с образованием обогащенного водородом газового потока, подаваемого на дополнительное сгорание, и обедненного водородом газового потока, подаваемого на сгорание сжатым воздухом. Изобретение позволяет повысить КПД выработки электроэнергии. 3 з. п. ф-лы, 1 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к технологии выработки электроэнергии в химически рекуперативном цикле с использованием турбин, работающих на газах, более конкретно к способу выработки электроэнергии.

Известен способ выработки электроэнергии, включающий двустадийный эндотермический каталитический паровой риформинг углеводородного сырья, первую стадию которого осуществляют при высоком давлении, а вторую стадию - при низком давлении, отвод продукта риформинга с первой стадии, который сжигают сжатым воздухом с последующим расширением получаемого газового продукта сгорания, и продукта риформинга со второй стадии, который сжигают отходящим газом расширения упомянутого газового продукта сгорания с последующим расширением получаемого при этом газового продукта сгорания и подачей получаемого в результате указанного расширения отходящего продукта на указанный двустадийный термический каталитический паровой риформинг, и отвода отработанного отходящего газа с указанного парового риформинга (см. например, Evaluation of Advanced Gas Turbine Cycles, Final report, август 1993 г., Fluor Daniel Inc., Irvine, CA).

Недостаток известного способа заключается в том, что его КПД не превышает примерно 50-52%.

Задачей изобретения является предоставление способа выработки электроэнергии, обеспечивающего повышенный КПД.

Поставленная задача решается в предлагаемом способе выработки электроэнергии, включающем эндотермический каталитический паровой риформинг углеводородного сырья, отвод газообразного продукта риформинга, сгорания последнего сжатым воздухом с последующим расширением газового продукта сгорания, дополнительное сгорание отходящего газа упомянутого расширения газообразным продуктом риформинга с последующим расширением получаемого при этом газообразного продукта сгорания и подачей отходящего газа расширения на указанный эндотеримческий каталитический паровой риформинг, и отвод отработанного отходящего газа с упомянутого парового риформинга, за счет того, что эндотермический каталитический паровой риформинг осуществляют с образованием обогащенного водородом газового потока, подаваемого на дополнительное сгорание, и обедненного водородом газового потока, подаваемого на сгорание сжатым воздухом.

Образование обогащенного водородом газового потока осуществляют путем непрерывного отделения водорода во время каталитического парового реформинга, которое целесообразно можно осуществлять в любом стандартном мембранном реакторе, снабженном неподвижным слоем катализатора парового риформинга. Такие известные реакторы снабжены пропускающей водород металлической мембраной на пористом керамическом слое.

Мембрана выполнена в виде трубки, размещенной в слое катализатора. Выделяющийся во время парового риформинга водород проникает через мембранную трубку и получаемый при этом обогащенный водородом газ отводят из трубки с помощью газоносителя, который обычно представляет собой пар. Так как водород непрерывно удаляют из образующегося во время реакции в слое катализаторе газа, из слоя катализатора отводят обедненный водородом газ.

При применении в предлагаемом способе мембранного реактора отводимый из слоя катализатора обедненный водородом газ подают на сгорание сжатым воздухом. При этом отводимый из реактора газ имеет высокое давление, что и требуется для сгорания сжатым воздухом.

Обогащенный водородом газ, который отводят из мембранной трубки при меньшем давлении, чем отводимый из слоя катализатора газ, подают на вышеупомянутое дополнительное сгорание. На этой второй стадии сгорания обогащенный водородом газ сжигают отходящим газом стадии расширения продукта сгорания сжатым воздухом. Получаемый в результате дополнительного сгорания газ расширяют до атмосферного давления или же давления несколько выше атмосферного. Механическую энергию, получаемую в результате расширения прошедшего сгорание газа в газовых турбинах первой и второй стадии расширения, переводят в электроэнергию с помощью подходящего генератора, например генератора трехфазного тока, вал которого связан с газовыми турбинами.

Предлагаемый способ можно осуществлять в установке, схематически представленной на приложенном чертеже.

Установка включает мембранный реактор 1 для осуществления парового риформинга, имеющий слой 2 парового катализатора риформинга, например, на основе никеля, и палладиевую мембранную трубку 3. Реактор снабжен линией 4 для подачи смеси углеводородного газа и пара под давлением и линией 5 для подачи в реактор 1 носителя для отвода газа, который представляет собой, например, пар. Кроме того, реактор 1 снабжен линией 6 для отвода отходящих газов, линией 7 для подачи обедненного газового потока на стадию сгорания 8, где его сжигают сжатым воздухом, подаваемым по линии 9 от воздушного компрессора 10, а также линией 11 для подачи обогащенного водородом газового потока на дополнительную стадию сгорания 12, где его сжигают отходящим газом, подаваемым по линии 13, подключенной к детандеру 14. В детандер 14 подают по линии 15 горячий газ сгорания. Дополнительная стадия сгорания 12 подключена через линию 16 к дополнительному детандеру 17, который в свою очередь связан через линию 18 с реактором 1. По линии 18 горячий отходящий газ подают в реактор 1 для обеспечения косвенного нагрева слоя 2 катализатора. Детандеры 14 и 17 связаны друг с другом и с генератором трехфазного тока 19.

Предлагаемый способ иллюстрируется следующим примером.

Пример. Природный газ и пар под давлением 40 атм подают по линии 4 в слой 2 катализатора в реакторе 1, в котором газ подвергают паровому риформингу путем контактирования с катализатором, который косвенно нагревается горячим отходящим газом, подаваемым по линии 18 от детендера 17. При этом горячий отходящий газ подают в реактор с температурой 750oC и после теплообмена отводят по линии 6 с температурой 636oC.

Часть получаемого во время парового риформинга природного газа водорода проникает через вышеуказанную мембранную трубку 3 и обогащенный водородом газовый поток отводят из трубки 3 с помощью пара, подаваемого по линии 5. Обогащенный водородом газ состава 43,6 об. % водорода и 96,4 об.% воды, имеющий температуру 600oC, подают по линии 11 в количестве 33407 нм3/ч на дополнительную стадию сгорания 12. Обедненный водородом газ состава 22,1 об. % метана, 12,3 об.% водорода, 1,8 об.% окиси углерода, 17,7 об.% двуокиси углерода, 45,9 об.% воды и 0,2 об.% азота, имеющий температуру 600oC, отводят из слоя 2 катализатора и в количестве 24943 нм3/ч подают по линии 7 на стадию 8 сгорания сжатым воздухом, подаваемым по линии 9. Подаваемый на сгорание газ имеет давление 40 атм. Получаемый при этом горячий продукт сгорания расширяют в детандере 14 с отдачей вращательной энергии. Из детандера 14 отводят по линии 13 отходящий газ, который сжигают обогащенным водородом газом, подаваемым под давлением 11 атм на дополнительную стадию сгорания 12. Получаемый на дополнительном сгорании горячий газовый продукт расширяют во втором детандере 17 с отдачей вращательной энергии. Получаемую в детандерах 14 и 17 вращательную энергию переводят в электроэнергию мощностью 56 МВт с помощью генератора 19. С учетом того, что энергосодержание подаваемого в реактор 1 природного газа составляет 100 МВт, КПД данного процесса составляет 56%.

Сравнительный пример (согласно прототипу). Повторяют процесс по вышеуказанному примеру с той лишь разницей, что мембранный реактор парового риформинга заменяют на реактор риформинга, в котором не осуществляют подразделение образующегося водорода. При этом природный газ энергосодержанием 100 МВт подвергают паровому риформингу с получением газа состава 25,0 об.% метана, 18,3 об.% водорода, 0,7 об.% окиси углерода, 5,0 об.% двуокиси углерода, 50,8 об.% воды и 0,2 об.% азота. При этом паровой риформинг также осуществляют путем косвенного теплообмена горячим отходящим газом второй стадии расширения, имеющим температуру 702oC, который после теплообмена отводят из реактора с температурой 641oC.

Получаемый в реакторе в количестве 33,661 нм3/ч газовый поток с температурой 600oC подразделяют на два потока в соотношении 67 : 33. Оба газовых потока сжигают и расширяют описанным в вышеуказанном примере образом. При этом вырабатывается электроэнергия мощностью 52 МВт, что соответствует КПД 52%. Следовательно, КПД способа по прототипу уменьшен на четыре абс.% по сравнению с предлагаемым способом по вышеуказанному примеру. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



1. Способ выработки электроэнергии, включающий эндотермический каталитический паровой риформинг углеводородного сырья, отвод газообразного продукта риформинга, сгорание последнего сжатым воздухом с последующим расширением газового продукта сгорания, дополнительное сгорание отходящего газа упомянутого расширения газообразным продуктом риформинга с последующим расширением получаемого при этом газообразного продукта сгорания и подачей отходящего газа расширения на указанный эндотермический каталитический паровой риформинг и отвод отработанного отходящего газа с упомянутого парового риформинга, отличающийся тем, что эндотермический каталитический паровой риформинг осуществляют с образованием обогащенного водородом газового потока, подаваемого на дополнительное сгорание, и обедненного водородом газового потока, подаваемого на сгорание сжатым воздухом.

2. Способ по п.1, отличающийся тем, что обогащенный водородом газовый поток подают на дополнительное сгорание с помощью носителя.

3. Способ по п.2, отличающийся тем, что в качестве носителя используют пар.

4. Способ по пп.1 - 3, отличающийся тем, что эндотермический каталитический паровой риформинг осуществляют в присутствии пропускающей водород мембраны.






ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к ЭЛЕКТРОЭНЕРГЕТИКЕ:
Гелиоэнергетика - Солнечные электростанции, Солнечные батареи. Солнечные коллекторы;
Ветроэнергетика - Ветроэнергетические установки. Ветродвигатели;
Волновые электростанции. Гидроэлектростанции;
Термоэлектрические источники тока;
Химические источники тока;
Нетрадиционные устройства и способы получения, преобразования и передачи ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ;
Устройства и способы экономии и сохранения электроэнергии;
Генераторы постоянного электрического тока. Электрические машины.



Устройства и способы получения, преобразования, передачи, экономии и сохранения электрической энергии




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "И" означает, что будут найдены только те страници, где встречается каждое из ключевых слов. При использовании режима "или" результатом поиска будут все страници, где встречается хотя бы одно ключевое слово.

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+электрический -генератор".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "генератор" будут найдены слова "генераторы", "ренераторов" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу ("генератор!").


Солнечные электростанции. Гелиоэнергетика | Ветроэнергетические установки. Ветродвигатели. Ветрогенераторы | Волновые, геотермальные и гидроэлектростанции | Термоэлектрические источники тока | Химические источники тока. Накопители электроэнергии. Батареи и аккумуляторы | Нетрадиционные устройства и способы получения, преобразования и передачи электрической энергии | Устройства и способы экономии и сохранения электроэнергии | Генераторы постоянного и переменного электрического тока. Электрические машины


Рейтинг@Mail.ru