СПОСОБ ИЗГОТОВЛЕНИЯ ИСКУССТВЕННОГО ПОРИСТОГО ЗАПОЛНИТЕЛЯ ДЛЯ ЛЕГКИХ БЕТОНОВ

СПОСОБ ИЗГОТОВЛЕНИЯ ИСКУССТВЕННОГО ПОРИСТОГО ЗАПОЛНИТЕЛЯ ДЛЯ ЛЕГКИХ БЕТОНОВ


--- Закажите полную версию данного патента ---
RU (11) 2277516 (13) C2

(51) МПК
C04B 20/00 (2006.01)
C04B 18/04 (2006.01) 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 05.10.2007 - может прекратить свое действие 

--------------------------------------------------------------------------------

Документ: В формате PDF 
(14) Дата публикации: 2006.06.10 
(21) Регистрационный номер заявки: 2004129615/03 
(22) Дата подачи заявки: 2004.10.08 
(24) Дата начала отсчета срока действия патента: 2004.10.08 
(43) Дата публикации заявки: 2005.04.20 
(45) Опубликовано: 2006.06.10 
(56) Аналоги изобретения: RU 2107668 C1, 27.03.1998.

SU 765236 A1, 23.09.1980.

SU 1209640 A1, 07.02.1986.

SU 296734 A1, 06.04.1971.

EP 0045297 А1, 03.02.1982.

ИЦКОВИЧ С.М. и др. Технология заполнителей бетона. - М.: Высшая школа, 1991, с.26-71.

РУДНАИ Д. Легкий бетон. - М.: изд-во литературы по строительству, 1964, с.149-167. 
(72) Имя изобретателя: Чернявский Исаак Яковлевич (RU); Козлов Юрий Евгеньевич (RU); Голубев Анатолий Анатольевич (RU) 
(73) Имя патентообладателя: Чернявский Исаак Яковлевич (RU); Козлов Юрий Евгеньевич (RU); Голубев Анатолий Анатольевич (RU) 
(98) Адрес для переписки: 454084, г.Челябинск, ул. Каслинская, 17, кв.105, А.Н. Чернову 

(54) СПОСОБ ИЗГОТОВЛЕНИЯ ИСКУССТВЕННОГО ПОРИСТОГО ЗАПОЛНИТЕЛЯ ДЛЯ ЛЕГКИХ БЕТОНОВ
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении заполнителей для легких бетонов. В способе изготовления искусственного пористого заполнителя готовят сырьевую смесь из дисперсного кремнеземистого компонента - золы ТЭС и связующего, формуют смесь в виде гранул, которые сушат, прокаливают и обжигают. Определяют температуру спекания полученной сырьевой смеси, отформованные и высушенные гранулы делят на три порции, прокаливают все три порции гранул при одинаковой температуре, но в течение разных отрезков времени - 1, 2 и 3, затем все три порции гранул обжигают по одинаковому режиму при температуре ниже температуры спекания смеси, охлаждают, готовят из них три серии контрольных бетонных образцов и определяют плотность бетона в каждой серии: 1, 2 и 3, а по полученным данным судят о длительности прокаливания, необходимой для получения бетона требуемой плотности. Технический результат: расширение технологических возможностей способа, снижение удельного расхода материальных, трудовых и энергетических ресурсов. 5 з.п. ф-лы, 2 ил., 3 табл. 




ОПИСАНИЕ ИЗОБРЕТЕНИЯ


Предложение относится к промышленности строительных материалов и может быть использовано при изготовлении заполнителей для легких бетонов.

Искусственный заполнитель используют для следующих видов легких бетонов: теплоизоляционных, плотностью 500 кг/м 3 и менее; конструкционно-теплоизоляционных - плотностью до 1400 кг/м3 и конструктивных, плотностью 1400-1800 кг/м3. Соответственно, нужны заполнители разной плотности. Установлены их марки по прочности на сжатие - от М25 до М400 [1]. Такой широкий диапазон марок по плотности и прочности обусловлен большой номенклатурой изделий, выполняемых из легких бетонов.

Известен способ изготовления заполнителя для легких бетонов, при котором смешивают золу ТЭС, содержащую кремнеземистый компонент и порообразователь в виде несгоревшего угля, со связующим - глиной или сульфитно-спиртовой бардой, формуют из полученной смеси гранулы, которые затем сушат и обжигают [2].

В процессе обжига гранул выгорает содержащийся в золе углерод, образующиеся газы поризуют гранулу, а процесс спекания фиксирует полученную пористую структуру. Эксплуатационные характеристики изготовляемого таким путем заполнителя зависят от большого числа факторов: химического и минералогического состава золы, температуры и длительности сушки, температуры и длительности обжига, а главным образом - от процентного содержания в золе несгоревшего угля и это затрудняет получение заданных параметров заполнителя. В этом недостаток приведенного аналога.

Золы различаются по многим параметрам: по виду сжигаемого угля, по способу золоудаления, по крупности и пр., величина потерь при прокаливании (ППП) колеблется от 3 до 25% [3, 4], а от этого зависит степень поризации материала и, соответственно, все эксплуатационные показатели бетона, включая плотность, прочность, теплопроводность и т.д. Следовательно, при заданных режимных параметрах изготовления гранул не все золы годятся для получения заполнителя с заданными показателями.

Известен также способ изготовления заполнителя, при котором в смесь кремнеземистого компонента и связующего дополнительно вводят порции порообразователя в виде отсевов засыпки печей обжига и графитации электродного производства, отформованные гранулы сушат при температуре 900°С и обжигают при 1240°С в течение 10 мин [5]. Это расширяет технологические возможности способа, однако и он не лишен недостатков: требуется лишний ингредиент, повышается трудоемкость процесса за счет необходимости корректировки состава смеси, транспортировки, складирования, дозирования ингредиента и гомогенизации смеси; кроме того, из готовой смеси невозожно получить несколько видов заполнителя с заданными, но разными свойствами, например, порцию заполнителя с плотностью 500 кг/м 3 и порцию - с плотностью 700 кг/м3.

Известен способ, при котором формуют сырцовые гранулы, сушат их и прокаливают при температуре 700-1000°С до содержания в них свободного углерода 2-3 мас.%, затем обжигают гранулы при температуре 1240-1290°С до спекания [6]. Этот способ более технологичен, чем предыдущий, поскольку: а) введена дополнительная операция прокаливания гранул, позволяющая изменять в смеси содержание свободного углерода, что дает возможность регулировать плотность заполнителя, изготовляемого из одной и той же сырьевой смеси; б) расширен температурный диапазон сушки, а это, в отличие от предыдущего аналога, позволяет использовать не одну конкретную золу, для которой указанная температура оптимальна, а несколько разных зол, что расширяет сырьевую базу производства заполнителей с заданными свойствами; в) расширен диапазон температур обжига - 1240-1290°С, что уменьшает опасность недожога и пережога при использовании разных зол, т.е. способствует повышению качества заполнителей; г) нет жесткого ограничения длительности обжига - 10 минут, что также обеспечивает возможность повышения качества гранул, формуемых из разных зол. Этот способ принят в качестве наиболее близкого аналога - прототипа.

Недостатки прототипа в следующем. Он не содержит совокупности операций и приемов, обеспечивающих: а) гарантированное изготовление заполнителей с заданной плотностью из разных зол; б) гарантированное изготовление из одной и той же сырьевой смеси нескольких видов заполнителя, имеющих разную задаваемую плотность. Введенная операция прокаливания, в принципе, позволяет добиться получения из разных зол гранул с одинаковой плотностью или наоборот, получать из одной и той же золы заполнитель с различной задаваемой плотностью, причем делать это без введения лишних ингредиентов; однако достичь этого можно только тяжелым путем перебора вариантов, т.е. трудо-, энерго- и материалоемким методом проб и ошибок, поскольку прототип не содержит соответствующих операций, приемов и режимных параметров. Можно сказать, что прототип имеет ограниченные технологические возможности, а преодоление этого недостатка связано с необходимостью увеличения расходов материальных, трудовых и энергетических ресурсов.

Задачей данного изобретения является устранение недостатков прототипа, т.е. расширение его технологических возможностей и снижение удельного расхода ресурсов.

Решение поставленной задачи обеспечивается за счет введения в известную совокупность операций и приемов, новых для этой совокупности операций, приемов и режимных параметров, обеспечивающих возможность гарантированного изготовления заполнителя с заданной плотностью из различных зол или изготовления из одной и той же зольной сырьевой смеси нескольких видов заполнителей с разными заданными значениями плотности.

Сущность предложенного способа: готовят сырьевую смесь из дисперсного кремнеземистого компонента - золы ТЭС и связующего, формуют гранулы, которые сушат, прокаливают и обжигают; особенность способа в том, что определяют температуру спекания смеси, отформованные и высушенные гранулы делят на три порции, прокаливают их при одинаковой температуре ниже температуры спекания, но в течение разных отрезков времени: 1=1 мин, 3 - время, необходимое для снижения содержания свободного углерода до величины 0,5-1,0 мас.%, а 2 - средняя арифметическая величина между 1 и 3 затем все три порции гранул обжигают по одинаковому режиму при температуре спекания смеси, охлаждают, готовят из них три серии контрольных образцов, определяют среднюю плотность бетона в каждой серии - 1, 2 и 3, а по полученным данным на основании зависимости =1130· 0,13, назначают нужное время прокаливания гранул для получения бетона требуемой плотности.

Способ характеризуется рядом факультативных признаков: а) прокаливание гранул осуществляют при значениях температуры, которые на 5-20% более низкие, чем температура спекания смеси; б) составы бетонов на каждой из трех порций заполнителя подбирают по единой известной методике, выдерживают их до испытания в одинаковых условиях, после чего определяют плотность, прочность, теплопроводность и другие показатели бетонов всех трех полученных серий, различающихся длительностью прокаливания заполнителя; в) в сырьевую смесь, предназначенную для изготовления заполнителя, добавляют порообразователь, например, в виде дисперсного угля; г) зависимость плотности бетона от длительности прокаливания заполнителя идентифицируют графически; д) зависимость плотности бетона от длительности прокаливания заполнителя идентифицируют аналитически.

Технический результат: расширение технологических возможностей способа, снижение удельного расхода материальных, трудовых и энергетических ресурсов.

Пример выполнения способа. Взята зола ТЭС (золошлаковая смесь), химический состав которой (мас.%) представлен ниже.

Таблица 1 
Химический состав золы ТЭС 
SiO 2 Al2O 3 Fe2O 3 СаО MgO FeO SO3 P2O 5 ППП 
52,6 24,15 8,44 3,97 2,93 2,15 0,14 0,61 5,05 


Таблица 2 
Гранулометрический состав золы 
Фракция, мм >5 5-2 2-0,5 0,5-0,25 0,25-0,063 <0,04 
Кол. мас. % 12 7,0 25,0 14,0 32,0 2,0 


Фазовоминералогический состав золы: стеклофаза, преимущественно ферроалюмосиликатная, в которой основные компоненты SiO2, Al2 O3, Fe2O3 составляют 80-90%, имеются также кварц, магнетит.

В качестве связующего взята глина (5% по массе) в виде водного шликера. Температура спекания сырьевой смеси 1200°С. Гранулы формовали на тарельчатом грануляторе, высушивали их до постоянного веса и разделили на три порции; все гранулы прокаливали при одинаковой температуре, равной 970°С. Первую порцию гранул прокаливали в течение 1 минуты, вторую - 18 минут, а третью в течение 36 минут ( 1=1 мин, 2=18 мин, 3=36 мин); после прокаливания гранулы обжигали при температуре 1250°С, охлаждали и отправляли на изготовление из них бетонных образцов.

В качестве вяжущего в бетоне использован цемент М400, а в качестве мелкого заполнителя - та же зола ТЭС. Все компоненты дозировали по объему: гранулы:зола:цемент=1:0,6:0,3. Из каждой порции гранул формовали по три образца бетона 15×15×15 см, пропаривали их в одной камере, высушивали и испытывали.

Таблица 3 
Результаты испытаний бетонов 
Номер состава бетона 1 2 3 
Время прокаливания, мин 1 18 36 
Плотность бетона, кг/м 3 1300 1670 1800 
Прочность бетона, МПа 12 24 30 


Заявленный технический результат достигается даже тогда, когда полученные экспериментальные данные используют в представленной табличной форме, без какой-либо математической обработки; действительно, из таблицы видно, что при использованных технологических параметрах для получения бетона с плотностью 1300 кг/м3 необходимо прокаливать гранулы в течение 1 минуты, а для бетона плотностью 1800 кг/м3 необходимо 36 минут.

Более высокая точность достигается в случае графического представления экспериментальных данных; на фиг.1 представлена кривая, которая позволяет назначать длительность прокаливания с точностью ±2 мин; особенно интересен линеаризованный график в двойном логарифмическом масштабе, который допускает не только нелинейную интерполяцию, но также и экстраполяцию (фиг.2).

В настоящее время получили широкое распространение компьютерные программы, выдающие эмпирическую формулу по экспериментальным данным. В этом отношении особый интерес представляет степенная функция у=К·хn, график которой может быть и линейным, и нелинейным, как с положительной, так и с отрицательной кривизной. Для построения такого графика и вывода эмпирической формулы достаточно трех экспериментальных точек. С использованием полученных экспериментальных результатов выведена следующая формула:



которая дает погрешность 1,5% при =18 мин и 0% при =36 мин.

Аналогичным образом можно получить формулу зависимости не только плотности, но и прочности бетона R от длительности прокаливания



Графики формул (1) и (2) являются параболами, но они легко линеаризуются:





Из формулы (4) видно, что прочность бетона является линейной функцией параметра К, изменение которого равносильно переносу графика функции по оси ординат, а величина К связана с количеством связующего в сырьевой смеси гранул. Следовательно, можно повышать (или понижать) прочность легкого бетона, не меняя его плотности.

Линеаризованный график, показанный на фиг.2, позволяет использовать не только интерполяцию, но и экстраполяцию, что существенно расширяет технологические возможности предложенного способа.

С использованием изложенного способа была изготовлена промышленная партия заполнителя для легкого бетона. Сырьевые компоненты те же, что и в вышеописанных экспериментах (в том числе данные таблиц 1 и 2); проектная плотность бетона 1700 кг/м 3, назначенное время прокаливания 20 минут; фактически полученная плотность 1670 кг/м3, погрешность менее 2%.

Источники информации

1. Строительные материалы. Под ред. Г.И.Горчакова. М., "Высшая школа", 1982, с.154-155.

2. Волженский А.В. и др. Применение зол и топливных шлаков в производстве строительных материалов. М., Стройиздат,1984.

3. ГОСТ 25592 "Смеси золошлаковые тепловых электростанций для бетонов".

4. ГОСТ 25818 "Золы-уноса тепловых электростанций для бетонов".

5. Патент РФ 2023703, кл. С 04 В 18/04, 1994.

6. Патент РФ 2107668, кл. С 04 В 18/04, 1998, прототип.




ФОРМУЛА ИЗОБРЕТЕНИЯ


1. Способ изготовления искусственного пористого заполнителя для легких бетонов, включающий приготовление сырьевой смеси из дисперсного кремнеземистого компонента - золы ТЭС и связующего, формование гранул, их сушку, прокаливание и обжиг отличающийся тем, что определяют температуру спекания смеси, отформованные и высушенные гранулы делят на три порции, прокаливают их при одинаковой температуре ниже температуры спекания, но в течение разных отрезков времени: 1=1 мин, 3 - время, необходимое для снижения содержания свободного углерода до величины 0,5-1,0 мас.%, а 2 - средняя арифметическая величина между 1 и 3 , затем все три порции гранул обжигают по одинаковому режиму при температуре спекания смеси, охлаждают, готовят из них три серии контрольных образцов, определяют среднюю плотность бетона в каждой серии 1, 2 и 3, а по полученным данным на основании зависимости =1130· 0,13 назначают нужное время прокаливания гранул для получения бетона требуемой плотности.

2. Способ по п.1, отличающийся тем, что прокаливание гранул осуществляют при значениях температуры на 5-20% более низких, чем температура спекания смеси.

3. Способ по любому из пп.1 и 2, отличающийся тем, что составы бетонов на каждой из трех порций заполнителя подбирают по единой известной методике, выдерживают до испытания в одинаковых условиях, после чего определяют плотность, прочность, теплопроводность и другие показатели бетонов всех трех полученных серий, различающихся длительностью прокаливания заполнителя.

4. Способ по любому из пп.1-3, отличающийся тем, что для получения максимально легкого бетона в сырьевую смесь, предназначенную для изготовления заполнителя, добавляют порообразователь, например, в виде дисперсного угля.

5. Способ по любому из пп.1-4, отличающийся тем, что зависимость плотности бетона от длительности прокаливания заполнителя идентифицируют графически.

6. Способ по любому из пп.1-5, отличающийся тем, что зависимость плотности бетона от длительности прокаливания заполнителя идентифицируют аналитически.






ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к СТРОЙИНДУСТРИИ: строительные составы, смеси и композиции для производства строительных материалов и ведения строительных работ, бетон, специальный бетон, добавки для бетона, влияющие на его физические и химические свойства, специальные строительные составы, смеси и композиции обладающие гидроизолирующими, теплозащитными, звукоизоляционными, антикоррозийными, герметизирующими, радиационно-защитными свойствами и способы их получения, лакокрасочные, клеевые составы и композиции, строительные изделия, окна и двери. шторы и жалюзи. фурнитура, гарнитура и комплектующие, устройство кровли, крыш зданий и сооружений кровельные материалы и изделия. приспособления и устройства, устройство покрытий полов. наливные полы. смеси и композиции, строительство и ремонт гидротехнических сооружений, технологии строительства и ремонтно-строительные работы при возведении объектов промышленного и гражданского назначения, новые технологии и способы ведения ремонтно-строительных работ, строительная техника и оборудование для производства строительных материалов и ведения строительных работ.



Новые технологии и изобретения в стройиндустрии




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "и" означает, что будут найдены только те страницы, где встречается каждое из ключевых слов. Например, при запросе "силикатный кирпич" будет найдено словосочетание "силикатный кирпич". При использовании режима "или" результатом поиска будут все страницы, где встречается хотя бы одно ключевое слово ("силикатный" или "кирпич").

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+силикатный -кирпич".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "кирпич" будут найдены слова "кирпич", "кирпичи" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу "кирпич!".


Строительные составы, смеси и композиции для производства строительных материалов и ведения строительных работ | Специальные строительные составы, смеси и композиции обладающие гидроизолирующими, теплозащитными, звукоизоляционными, антикоррозийными, герметизирующими, радиационно-защитными свойствами и способы их получения | Лакокрасочные, клеевые составы и композиции | Строительные изделия | Новые технологии и способы ведения ремонтно-строительных работ | Окна и двери. Шторы и жалюзи. Фурнитура, гарнитура и комплектующие | Устройство кровли, крыш зданий и сооружений кровельные материалы и изделия. Приспособления и устройства | Бетон. Добавки для бетона, влияющие на его физические и химические свойства | Устройство покрытий полов. Наливные полы. Смеси и композиции | Строительство и ремонт гидротехнических сооружений | Технологии строительства и ремонтно-строительные работы при возведении объектов промышленного и гражданского назначения | Строительная техника и оборудование для производства строительных материалов и ведения строительных работ | Способы производства строительных материалов из древесины и отходов деревообработки


Рейтинг@Mail.ru