СПОСОБ ПОЛУЧЕНИЯ АЛКИЛЕНГЛИКОЛЕЙ

СПОСОБ ПОЛУЧЕНИЯ АЛКИЛЕНГЛИКОЛЕЙ


--- Закажите полную версию данного патента ---
RU (11) 2284985 (13) C2

(51) МПК
C07C 31/20 (2006.01)
C07C 29/10 (2006.01) 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 17.10.2007 - действует 

--------------------------------------------------------------------------------

Документ: В формате PDF 
(14) Дата публикации: 2006.10.10 
(21) Регистрационный номер заявки: 2004137235/04 
(22) Дата подачи заявки: 2004.12.21 
(24) Дата начала отсчета срока действия патента: 2004.12.21 
(43) Дата публикации заявки: 2006.06.10 
(45) Опубликовано: 2006.10.10 
(56) Аналоги изобретения: RU 2001901 C1, 30. 10.1993. RU 2122995 C1, 10.12.1998. US 6580008 B2, 17.06.2003. US 6137015 A, 24.10.2000. 
(72) Имя изобретателя: Швец Валерий Федорович (RU); Козловский Роман Анатольевич (RU); Сучков Юрий Павлович (RU); Сахапов Гаяз Замикович (RU); Зарипов Габдульнур Габдульнурович (RU); Сафин Дамир Хасанович (RU) 
(73) Имя патентообладателя: Российский химико-технологический университет им. Д.И. Менделеева (RU) 
(98) Адрес для переписки: 125047, Москва, Миусская пл., 9, РХТУ, патентный отдел 

(54) СПОСОБ ПОЛУЧЕНИЯ АЛКИЛЕНГЛИКОЛЕЙИзобретение относится к способу получения алкиленгликолей - компонентов для низкозамерзающих, антиобледенительных, гидравлических и гидротормозных жидкостей, а также используемых при производстве растворителей, пластификаторов, для получения материалов, применяемых в промышленности пластических масс, пестицидов, лаков и красок. Способ включает гидратацию оксидов алкилена при повышенных температурах и давлении в реакторе или каскаде реакторов вытеснения в присутствии каталитической системы на основе анионообменных смол в солевой форме. При этом процесс проводят путем периодического перераспределения потока с максимальной концентрацией оксида алкилена по реактору или реакторам каскада. Как правило, процесс гидратации проводят в каскаде реакторов вытеснения, соединенных в последовательно-параллельную цепь с дробной (рассредоточенной) подачей оксида алкилена по реакторам каскада. Обычно перераспределение потока с максимальной концентрацией оксида алкилена по реактору осуществляют путем переключения подачи потока с максимальной концентрацией оксида алкилена со входа реактора на выход, а перераспределение потока с максимальной концентрацией оксида алкилена по реакторам каскада осуществляют путем периодического переключения подачи потока с максимальной концентрацией с одного реактора на другой. Как правило, процесс гидратации проводят в присутствии добавок неорганических и/или органических кислот, и/или их солей, и/или диоксида углерода. Способ позволяет снизить скорость набухания катализатора. 4 з.п. ф-лы, 2 табл., 4 ил. 



ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к способу получения алкиленгликолей компонентов для низкозамерзающих, антиобледенительных, гидравлических и гидротормозных жидкостей, а также используемых при производстве растворителей, пластификаторов, для получения материалов, применяемых в промышленности пластических масс, пестицидов, лаков и красок.
Известен способ получения алкиленгликолей гидратацией оксидов алкилена при повышенных температуре и давлении в реакторах адиабатического типа в присутствии катализатора - анионообменной смолы в солевой форме, в котором процесс гидратации проводят при рециркуляции части реакционной массы, выходящей из реактора на вход реактора (US 6580008). Данный способ характеризуется низкой скоростью набухания используемого катализатора (0,12-0,22 об.% в сутки). Однако она достигается либо за счет очень низких нагрузок на катализатор (объемная скорость подачи шихты 2 л /л катализатора в час), либо за счет низкой конверсии оксида этилена (30-90%). В связи с этим главным недостатком процесса является низкая удельная производительность катализатора по моногликолю, которая не превышает 0,4-0,6 кг этиленгликоля с литра катализатора в час.
Известны способы получения алкиленгликолей гидратацией оксидов алкилена при повышенных температуре и давлении в реакторах адиабатического типа в присутствии катализатора - анионообменной смолы в солевой форме, в котором процесс гидратации проводят в присутствии добавок поликарбоновых органических кислот в исходную шихту (US 6448456, US 6479715). Данные способы позволяют получать моногликоль с высокой селективностью.
Основным недостатком данных способов являются относительно высокая скорость набухания катализатора и низкая производительность катализатора, которые в лучшем примере 7 способов составляют, соответственно, 1,3 об.% в сутки и ?0,8 кг ЭГ/л катализатора в час.
Известен способ получения алкиленгликолей гидратацией оксидов алкилена при повышенных температуре и давлении в реакторах адиабатического типа в присутствии катализатора - анионообменной смолы в бикарбонатной форме и рН исходной смеси, равной 5-9 (US 6137015). Проведение процесса каталитической гидратации в данных условиях (температура ?100°С, концентрация оксида в исходной шихте ?11 мас.%) позволяет с высокой селективностью получать моноэтиленгликоль и при этом снизить скорость набухания катализатора - анионита до 0,7% об./сутки. Однако такая скорость набухания достигается, подавая на гидратацию растворы с низким содержанием оксидов алкилена, при этом получаются разбавленные растворы гликолей (до 12 мас.%), что требует больших энергетических затрат на отгонку воды. Кроме того, данный способ характеризуется низкой производительностью катализатора, которая не превышает в лучшем примере 5 способа величины 0,58 кг этиленгликоля с литра катализатора в час.
Наиболее близким аналогом предложенного способа является способ получения алкиленгликолей гидратацией оксидов алкилена в реакторе вытеснения при 80-130°С и 0,8-1,6 МПа в присутствии катализатора-анионита в солевой (бикарбонатной) форме и добавки диоксида углерода в реакционную шихту. Согласно данному способу возможно получать концентрированные растворы, содержащие 65-90 мас.% гликолей с селективностью 93-96% по моногликолю (RU 2001901).
Однако согласно данным, приведенным в US 6160187, катализатор по данному способу в процессе эксплуатации подвергается набуханию (т.е. в процессе эксплуатации увеличивается объем катализатора), при этом скорость набухания катализатора в данном способе составляет более 1,5 об.% в сутки. Косвенно о набухании катализатора по способу RU 2001901 можно также судить потому, что в качестве реакторов данного способа используются реактора, частично заполненные катализатором.
Техническим результатом изобретения является снижение скорости набухания катализатора.
Данный технический результат достигается гидратацией оксидов алкилена при повышенных температурах и давлении в реакторе или каскаде реакторов вытеснения в присутствии каталитической системы на основе анионообменных смол в солевой форме, в котором процесс проводят при периодическом перераспределении потока с максимальной концентрацией оксида алкилена по реактору или реакторам каскада.
Предпочтительно, процесс гидратации проводят при 80-130°С и 1,0-2,0 МПа в каскаде реакторов вытеснения, соединенных в последовательно-параллельную цепь с дробной (рассредоточенной) подачей оксида алкилена по реакторам каскада.
Предпочтительно перераспределение потока с максимальной концентрацией оксида алкилена по реактору осуществляют путем переключения подачи потока с максимальной концентрацией оксида алкилена со входа реактора на выход.
Предпочтительно перераспределение потока с максимальной концентрацией оксида алкилена по реакторам каскада осуществляют путем периодического переключения подачи потока с одного реактора на другой.
Процесс гидратации может быть осуществлен в присутствии добавок кислот, и/или их солей, и/или диоксида углерода или без них. При этом в качестве кислот могут быть использованы сернистая, ортофосфорная, борная, кремниевая, карбоновые и дикарбоновые кислоты, содержащие 1-20 атомов углерода. В качестве карбоновых и дикарбоновых кислот могут быть использованы муравьиная, уксусная, щавелевая, малоновая, янтарная, яблочная, гликолевая, молочная, винная, лимонная и другие кислоты. В качестве солей могут быть использованы соли лития, натрия, калия или аммония вышеуказанных кислот. Содержание кислот, и/или их солей, и/или диоксида углерода в исходном водном растворе алкиленоксида (исходной шихте) может обычно находится в интервале 0,0001-0,1 мас.%.
Предпочтительно процесс гидратации проводят в присутствии добавок неорганических и/или органических кислот, и/или их солей, и/или диоксида углерода.
Следующие примеры иллюстрируют способ
Примеры 1-7 (сравнительные)
Процесс проводят в трубчатом реакторе вытеснения объемом 2,2 мл, заполненном катализатором в количестве 1 мл. В качестве катализатора используют аниониты марок АВ-17-Т, Dowex SBR, Amberjet 4400 в солевой форме, представляющие собой сшитый дивинилбензолом полистирол, содержащий четвертичные аммониевые группы, координированные с аниономи кислоты.
На вход реактора подают исходную шихту - смесь оксида этилена и воды. Концентрации оксида этилена в исходной шихте 20 мас.%. Скорость подачи шихты в реактор 0,297 мл/мин. Температуру в реакторе поддерживают на уровне 115°С ± 2°С за счет подачи в рубашку реактора теплоносителя. На выходе из реактора отбирают реакционную массу, которую анализируют методом ГЖХ, вычисляя при этом степень превращения оксида алкилена (ХOA), селективность образования моногликоля (Ф МАГ) и удельную производительность катализатора (Gy). После заметного падения активности катализатора процесс гидратации останавливают, фиксируют общее время процесса гидратации ( ), измеряют объем анионита (VKt) и рассчитывают скорость его набухания (Wн) по методике, описанной в US 6160187. Условия процесса и результаты гидратации приведены в таблице 1.
Примеры 8-14
Процесс гидратации начинают аналогично примерам 1-7 (Фиг.1a), но через 24 часа переключают подачу потока исходной шихты со входа на выход (Фиг.1б) и в таком режиме подачи осуществляют процесс гидратации в течение 24 часов. После этого подачу исходной шихты переключают согласно схеме, изображенной на Фиг.1а. Такое переключение подачи со схемы 1а на схему 1б осуществляют с интервалом 24 часа. Результаты процесса гидратации в таком режиме приведены в таблице 2.
Примеры 15-21
Осуществляют аналогично примерам 1-7 (Фиг.1a), но через 2 суток (48 часов) переключают подачу потока исходной шихты со входа на выход (Фиг.1б) и в таком режиме подачи осуществляют процесс гидратации в течение последующих 2 суток (48 часов). После этого подачу исходной шихты переключают согласно схеме, изображенной на Фиг.1а. Такое переключение подачи со схемы 1а на схему 1б осуществляют с интервалом 120 часов. Результаты процесса гидратации в таком режиме приведены в таблице 2.
Пример 22 (сравнительный)
Процесс проводят в каскаде двух последовательно соединенных трубчатых реакторов вытеснения объемом по 1,1 мл, заполненных катализатором в количестве по 0,5 мл. В качестве катализатора используют анионит марки Dowex SBR в бикарбонатной форме.
Процесс осуществляют по схеме, изображенной на Фиг.2а. На вход первого реактора каскада подают исходную шихту - смесь оксида этилена (20 мас.%) и воды (80 мас.%) со скоростью 0,297 мл/мин. Продукты реакции, выходящие из первого реактора, направляют на вход второго реактора. Температуру в реакторах каскада поддерживают на уровне 115°С ± 2°С за счет подачи в рубашку реакторов теплоносителя.
На выходе из второго реактора отбирают реакционную массу, которую анализируют методом ГЖХ, вычисляя при этом степень превращения оксида алкилена (Х ОА), селективность образования моногликоля (ФМАГ ) и удельную производительность катализатора (Gy). После заметного падения активности катализатора процесс гидратации останавливают, фиксируют общее время процесса гидратации ( ), измеряют объем анионита (VKt) и рассчитывают скорость его набухания (Wн). Условия процесса и результаты гидратации приведены в таблице 2.
Пример 23
В первые 24 часа процесс проводят аналогично примеру 22 (Фиг.2а), после этого поток исходной шихты направляют на вход второго реактора каскада, а продукты реакции, выходящие из второго реактора, направляют в первый реактор. Организация подачи изображена на Фиг.2б. Из первого реактора отбирают конечный продукт, который анализируют, аналогично примеру 1. Такое переключение подачи со схемы 2а на схему 2б осуществляют с интервалом 24 часа. Результаты гидратации при таком периодическом перераспределении потоков приведены таблице 2.
Пример 24
В первые 24 часа процесс проводят аналогично примеру 22 (Фиг.2а), после этого меняют направление движения потоков в каскаде согласно схеме, изображенной на Фиг.2в. Из второго реактора отбирают конечный продукт, который анализируют, аналогично примеру 1. Такое переключение подачи со схемы 2а на схему 2в осуществляют с интервалом 24 часа. Результаты гидратации при таком периодическом перераспределении потоков приведены таблице 2.
Пример 25 (сравнительный)
Процесс проводят в каскаде, состоящем из двух последовательно соединенных трубчатых реакторов вытеснения объемом по 1,1 мл, заполненных катализатором в количестве по 0,5 мл. В качестве катализатора используют анионит марки Dowex SBR в бикарбонатной форме.
Процесс осуществляют по схеме, изображенной на Фиг.3а. На вход первого реактора каскада подают исходную шихту - смесь оксида этилена (15 мас.%) и воды (85 мас.%) со скоростью 0,257 мл/мин (0,252 г/мин). Продукты реакции, выходящие из первого реактора, содержащие 1,35 мас.% непрореагировавшего оксида этилена смешивают с чистым оксидом этилена (0,04 мл/мин, 0,0348 г/мин) и полученную смесь направляют на вход второго реактора. Концентрация оксида этилена на входе во второй реактор 12,7 мас.%. Общее количество подаваемого оксида этилена в реакторный узел составляет 0,0726 г/мин. Общее количество воды - 0,2142 г/мин.
Температуру в реакторах каскада поддерживают на уровне 115°С ± 2°С за счет подачи в рубашку реакторов теплоносителя.
На выходе из второго реактора отбирают реакционную массу, которую анализируют методом ГЖХ, вычисляя при этом степень превращения оксида алкилена (ХОА), селективность образования моногликоля (ФМАГ) и удельную производительность катализатора (Gy). После заметного падения активности катализатора процесс гидратации останавливают, фиксируют общее время процесса гидратации ( ), измеряют объем анионита (VKt) и рассчитывают скорость его набухания (Wн). Условия процесса и результаты гидратации приведены в таблице 2.
Пример 26
В первые 48 часов процесс проводят аналогично примеру 25 (Фиг.3а), после этого поток исходной шихты направляют на выход второго реактора каскада, а продукты реакции, выходящие из второго реактора, смешивают с чистым оксидом этилена и направляют в первый реактор. Организация подачи изображена на Фиг.3б. Из первого реактора отбирают конечный продукт, который анализируют, аналогично примеру 1. Такое переключение подачи со схемы 3а на схему 3б осуществляют с интервалом 48 часов. Результаты гидратации при таком периодическом перераспределении потоков приведены таблице 2.
Пример 27
В первые 48 часов процесс проводят аналогично примеру 25 (Фиг.3а), подавая при этом исходную шихту, дополнительно содержащую 0,001 мас.% борной кислоты, 0,01 мас.% аммония винно-кислого (кислого), 0,001 мас.% бикарбоната калия. После этого процесс осуществляют аналогично примеру 26. Результаты гидратации приведены таблице 2.
Пример 28
Данный пример иллюстрирует перераспределение потока с максимальной концентрацией оксида этилена по каскаду реакторов вытеснения с дробной подачей оксида этилена, которое осуществляют путем периодического изменения количества подаваемого оксида на вход реакторов каскада.
В первые 24 часа процесс проводят аналогично примеру 25 (Фиг.3а). После этого на вход первого реактора каскада начинают подавать исходную шихту - смесь оксида этилена и воды, содержащую 10 мас.% оксида этилена со скоростью 0,241 мл/мин (0,238 г/мин).
Продукты реакции, выходящие из первого реактора, содержащие 0,25 мас.% непрореагировавшего оксида этилена, смешивают с чистым оксидом этилена (0,04 мл/мин, 0,0488 г/мин) и полученную смесь, содержащую 17,2 мас.%. Оксида этилена направляют на вход второго реактора. Общее количество подаваемого оксида этилена в реакторный узел составляет 0,0726 г/мин. Общее количество воды - 0,2142 г/мин.
Такое периодическое изменение концентрации оксида этилена на входе в первый и второй реакторы осуществляют с интервалом 24 часов. Результаты гидратации при таком периодическом изменении концентрации оксида в потоках приведены таблице 2.
Пример 29.
Данный пример иллюстрирует перераспределение потока с максимальной концентрацией оксида этилена по реактору вытеснения, которое осуществляют путем периодического изменения положения штуцера ввода исходной шихты в реактор.
Процесс проводят в вертикальном трубчатом реакторе вытеснения объемом 4 мл (длина - 20 см, диаметр - 0,5 см), заполненным 2 мл катализатора (анионит марки АВ-17-Т в бикарбонатной форме). Высота слоя катализатора 10 см. Реактор снабжен подвижным штуцером ввода исходной шихты, позволяющим изменять ввод шихты по длине (высоте) реактора, а также двумя штуцерами вывода продуктов реакции из реактора (Фиг.4). В начале процесс осуществляют согласно схеме, представленной на Фиг.4а. На вход реактора подают исходную шихту (смесь оксида этилена и воды) со скоростью 0,594 мл/мин с концентрацией оксида этилена 20 мас.%. Температуру в реакторе поддерживают на уровне 115°С ± 2°С за счет подачи в рубашку реактора теплоносителя. В этом случае нижний штуцер вывода продуктов реакции закрыт, а реакционная смесь поступает в самую нижнюю часть реактора (Н0, Фиг.4а). Из нижней части реактора исходная шихта поднимается вверх по реактору через весь слой катализатора, а продукты реакции отводят через верхний штуцер. Процесс проводят таким образом 72 часа. После этого, не останавливая процесс, перемещают штуцер ввода исходной шихты на расстояние от нижнего уровня катализатора, равное 2 см (H1, Фиг.4б), открывают нижний вентиль отвода продуктов реакции так, чтобы скорость отвода продуктов реакции из нижнего штуцера была в 4 раза меньше скорости отвода продуктов реакции из верхнего штуцера. Процесс проводят таким образом 56 часов, после которых перемещают штуцер ввода исходной шихты на расстояние от нижнего уровня катализатора, равное 5 см (Н2, Фиг.4в), а нижний вентиль отвода продуктов реакции открывают так, чтобы скорость отвода продуктов реакции из нижнего штуцера была равна скорости отвода продуктов реакции из верхнего штуцера. При таких условиях процесс осуществляют 48 часов. После этого перемещают штуцер ввода исходной шихты на расстояние от нижнего уровня катализатора, равное 10 см (H L, Фиг.4г), вентиль отвода продуктов из верхнего штуцера закрывают, а продукты реакции выводят из нижнего штуцера. Процесс осуществляют таким образом еще 80 часов. Результаты гидратации при такой организации подачи исходной шихты приведены таблице 2.
Методы перераспределения потоков с максимальной концентрацией оксида алкилена не ограничиваются приведенными примерами.
Таблица 1.

Условия и результаты гидратации по примерам 1-7 (сравнительные) 
№ примера Марка анионита Форма Аниона Добавка в исходную шихту, мас.% ХОА ФМАГ VKt Wн 
соль кислота CO2 час % % мл % час 
1 АВ-17-Т бикарбонат - - - 198 79-97 94-97 2,0 0,51 
2 Dowex SBR бикарбонат - - - 180 80-96 93-98 2,1 0,61 
3 АВ-17-Т цитрат NaHCO3 (0,003) Лимонная (0,003) - 203 84-96 92-98 1,6 0,30 
4 Dowex SBR цитрат - Лимонная (0,005) - 187 74-91 95-97 1,4 0,21 
5 Dowex Maraton фосфат NaHCO3 (0,001) Винная (0,009) 0,002 176 72-90 93-98 1,8 0,45 
6* Amberjet 4400 бикарбонат - - - 275 82-95 98-99 1,8 0,29 
7** Dowex SBR цитрат Na-цитрат (0,001) Лимонная (0,005) - 302 78-90 97-98 1,9 0,30 
Таблица 2

Результаты гидратации. Примеры 8-29 
№ ХОА ФМАГ VKt Wн № ХОА ФМАГ VKt Wн 
примера час % % мл %/час примера час % % мл %/час 
8 198 89-97 95-97 1,3 0,15 19 176 78-90 94-98 1,4 0,23 
9 180 85-96 94-98 1,3 0,17 20* 275 79-95 94-98 1,5 0,18 
10 203 89-96 93-98 1,2 0,10 21** 302 80-90 93-98 1,5 0,17 
11 187 77-91 95-97 1,1 0,05 22ср 180 80-96 93-98 2,1 0,61 
12 176 78-90 94-98 1,3 0,17 23 180 82-96 93-98 1,4 0,22 
13* 275 79-95 94-98 1,4 0,16 24 180 81-96 93-98 1,6 0,33 
14** 302 80-90 93-98 1,4 0,13 25ср 180 81-96 93-98 2,0 0,56 
15 198 89-97 95-97 1,4 0,15 26 180 82-96 93-98 1,6 0,33 
16 180 85-96 94-98 1,4 0,17 27 180 83-96 94-98 1,5 0,28 
17 203 89-96 93-98 1,3 0,10 28 180 82-96 93-98 1,4 0,22 
18 187 77-91 95-97 1,3 0,05 29 256 83-97 91-97 3,7 0,33 
Примечание:* - концентрация оксида этилена в исходной шихте - 10 мас.%

** - концентрация оксида пропилена в исходной шихте - 25 мас.% 





ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения алкиленгликолей гидратацией оксидов алкилена при повышенных температурах и давлении в реакторе или каскаде реакторов вытеснения в присутствии каталитической системы на основе анионообменных смол в солевой форме, отличающийся тем, что процесс проводят путем периодического перераспределения потока с максимальной концентрацией оксида алкилена по реактору или реакторам каскада.
2. Способ по п.1, отличающийся тем, что процесс гидратации проводят в каскаде реакторов вытеснения, соединенных в последовательно-параллельную цепь с дробной (рассредоточенной) подачей оксида алкилена по реакторам каскада.
3. Способ по п.1, отличающийся тем, что перераспределение потока с максимальной концентрацией оксида алкилена по реактору осуществляют путем переключения подачи потока с максимальной концентрацией оксида алкилена со входа реактора на выход.
4. Способ по п.1, отличающийся тем, что перераспределение потока с максимальной концентрацией оксида алкилена по реакторам каскада осуществляют путем периодического переключения подачи потока с максимальной концентрацией с одного реактора на другой.
5. Способ по п.1, отличающийся тем, что процесс гидратации проводят в присутствии добавок неорганических и/или органических кислот, и/или их солей, и/или диоксида углерода.







ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к СТРОЙИНДУСТРИИ: строительные составы, смеси и композиции для производства строительных материалов и ведения строительных работ, бетон, специальный бетон, добавки для бетона, влияющие на его физические и химические свойства, специальные строительные составы, смеси и композиции обладающие гидроизолирующими, теплозащитными, звукоизоляционными, антикоррозийными, герметизирующими, радиационно-защитными свойствами и способы их получения, лакокрасочные, клеевые составы и композиции, строительные изделия, окна и двери. шторы и жалюзи. фурнитура, гарнитура и комплектующие, устройство кровли, крыш зданий и сооружений кровельные материалы и изделия. приспособления и устройства, устройство покрытий полов. наливные полы. смеси и композиции, строительство и ремонт гидротехнических сооружений, технологии строительства и ремонтно-строительные работы при возведении объектов промышленного и гражданского назначения, новые технологии и способы ведения ремонтно-строительных работ, строительная техника и оборудование для производства строительных материалов и ведения строительных работ.



Новые технологии и изобретения в стройиндустрии




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "и" означает, что будут найдены только те страницы, где встречается каждое из ключевых слов. Например, при запросе "силикатный кирпич" будет найдено словосочетание "силикатный кирпич". При использовании режима "или" результатом поиска будут все страницы, где встречается хотя бы одно ключевое слово ("силикатный" или "кирпич").

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+силикатный -кирпич".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "кирпич" будут найдены слова "кирпич", "кирпичи" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу "кирпич!".


Строительные составы, смеси и композиции для производства строительных материалов и ведения строительных работ | Специальные строительные составы, смеси и композиции обладающие гидроизолирующими, теплозащитными, звукоизоляционными, антикоррозийными, герметизирующими, радиационно-защитными свойствами и способы их получения | Лакокрасочные, клеевые составы и композиции | Строительные изделия | Новые технологии и способы ведения ремонтно-строительных работ | Окна и двери. Шторы и жалюзи. Фурнитура, гарнитура и комплектующие | Устройство кровли, крыш зданий и сооружений кровельные материалы и изделия. Приспособления и устройства | Бетон. Добавки для бетона, влияющие на его физические и химические свойства | Устройство покрытий полов. Наливные полы. Смеси и композиции | Строительство и ремонт гидротехнических сооружений | Технологии строительства и ремонтно-строительные работы при возведении объектов промышленного и гражданского назначения | Строительная техника и оборудование для производства строительных материалов и ведения строительных работ | Способы производства строительных материалов из древесины и отходов деревообработки


Рейтинг@Mail.ru