СПОСОБ ПОЛУЧЕНИЯ ОТВЕРДИТЕЛЯ

СПОСОБ ПОЛУЧЕНИЯ ОТВЕРДИТЕЛЯ


RU (11) 2251556 (13) C1

(51) 7 C08G59/40, C08K5/20 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 17.10.2007 - прекратил действие, но может быть восстановлен 

--------------------------------------------------------------------------------

Документ: В формате PDF 
(14) Дата публикации: 2005.05.10 
(21) Регистрационный номер заявки: 2003132727/04 
(22) Дата подачи заявки: 2003.11.10 
(24) Дата начала отсчета срока действия патента: 2003.11.10 
(45) Опубликовано: 2005.05.10 
(56) Аналоги изобретения: RU 2140935 С1, 10.11.1999. US 6111044 А, 29.08.2000. SU 2785790 A1, 30.05.1981. 
(72) Имя изобретателя: Николаев П.В. (RU); Николаева Е.П. (RU); Козлов Н.А. (RU) 
(73) Имя патентообладателя: Государственное образовательное учреждение высшего профессионального образования "Ивановский государственный химико-технологический университет" (ГОУВПО "ИГХТУ") (RU) 
(98) Адрес для переписки: 153460, г.Иваново, пр. Ф. Энгельса, 7, ГОУВПО "ИГХТУ", патентный отдел 

(54) СПОСОБ ПОЛУЧЕНИЯ ОТВЕРДИТЕЛЯИзобретение относится к химической технологии и может быть использовано в лакокрасочной промышленности, а также в других отраслях, применяющих эпоксидные композиционные материалы. Преимущественной областью применения способа получения отвердителя является изготовление электроизоляционных эпоксидных полимерных материалов. Техническая задача - повышение экономичности и технологичности процесса, увеличение срока годности отвердителя и повышение морозоустойчивости изделий с использованием эпоксидного отвержденного компаунда. Сущность изобретения заключается в том, что в способе получения отвердителя для эпоксидных олигомеров и композитов на их основе путем взаимодействия триэтаноламина со сложными эфирами алкилкарбоновых кислот растительных масел взаимодействие осуществляют в присутствии азотсодержащих красителей в количестве 0,2-4,7 масс.%, а в качестве сложных эфиров алкилкарбоновых кислот используют касторовое масло при содержании триэтаноламина 19,2-77,0 масс.% и касторового масла 18,3-80,6 масс.%, а процесс ведут при 130-220°С в течение 2-6 часов. 1 табл.



ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Область техники
Изобретение относится к способу получения отвердителей для эпоксидных олигомеров и композитов на их основе и может быть использовано в лакокрасочной промышленности, а также в других отраслях, использующих эпоксидные композиционные материалы в качестве покрытий, клеев, герметиков, компаундов, например, в электро- и радиотехнике, приборостроении, атомной технике, в химической, нефтяной, пищевой промышленности, в судостроении, в машиностроении и др. Преимущественной областью применения отвердителя является получение электроизоляционных эпоксидных материалов с высокими физико-механическими свойствами и морозостойкостью, например, при заливке статоров электродвигателей, работающих в диапазоне перепадов температур от -60 до +50°С.
УРОВЕНЬ ТЕХНИКИ
Известен способ получения отвердителей - низкомолекулярных полиамидов, предназначенных для получения композиционных материалов на основе низкомолекулярных эпоксидных олигомеров, например, ПО-200 (ТУ 6-10-1255-72), ПО-201 (ТУ 6-10-1304-72), ПО-300 (ТУ 6-1-1108-71). Способ осуществляется в две стадии. На первой из них получают метиловые эфиры жирных кислот соевого масла путем переэтерификации растительного масла метанолом, проводимой в присутствии катализатора. На второй стадии полученные метиловые эфиры взаимодействуют с полиэтиленполиаминами или диэтилентриамином [Сырье и полупродукты для лакокрасочных материалов: Справ. пособие. Под ред. М.М.Гольдберга. - М.: Химия, 1978. 510 с., с.153]. Недостатками существующих способов являются их стадийность, длительность, применение токсичных видов сырья (метанол, амины), а также выделение побочных продуктов реакций - глицерина и токсичного метанола. 
Полиамиды, получаемые по известному способу и применяемые для получения эпоксидных композитов, позволяют достичь высоких физико-механических свойств полимерных эпоксидных материалов, но не дают жизнеспособных композитов и не позволяют получать морозостойкие эпоксидные полимерные изделия.
Известен способ получения отвердителя - этаноламидов технического рапсового масла (этаноламиды ТР) для эпоксидных олигомеров и композитов на их основе [Полимерная композиция. Пат. 2140935 Россия, МКИ С 08 G 59/44, С 08 L 63/02, С 08 К 5/20 // С 09 К 3/10. Усачева Т.С., Лебедев Г.А., Койфман О.И., Месник О.М., Лекомцева Н.Б.; Ивановская государственная химико-технологическая академия. Акционерное общество "Ивхимпром" - N 97113116/04; заявл. 30.07.97; опубл. 10.11.99, Бюл. N31] путем взаимодействия технического триэтаноламина и рапсового масла. Способ осуществляется в две стадии. На первой стадии рапсовое масло подвергают реакции переэтерификации метанолом в присутствии катализатора и в результате получают смесь сложных метиловых эфиров алкилкарбоновых кислот рапсового масла. Процесс ведут при температуре 28-35°С, полученные эфиры отделяют от избытка метанола и глицерина отстаиванием. Данная стадия характеризуется большой длительностью (время цикла 17 часов), обусловленной необходимостью отстаивания эфиров кислот. В качестве побочного продукта образуется глицерин.
На второй стадии метиловые эфиры алкилкарбоновых кислот реагируют с триэтаноламином. Процесс ведут при температуре 140°С в течение 3-5 часов в присутствии катализатора. Синтез сопровождается образованием побочного продукта - метанола, который отгоняют и утилизируют. 
Недостатками прототипа являются его двухстадийность и большая продолжительность процесса. Глицерин и метанол, как побочные продукты первой и второй стадий, зачастую не утилизируются. Кроме того, этаноламиды технического рапсового масла со временем теряют способность к отверждению, т.е. срок годности их ограничен. Эпоксидные материалы, отвержденные этаноламидами ТР, не являются морозостойкими. 
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Изобретательская задача состояла в разработке способа получения отвердителя, позволяющего повысить экономичность и технологичность процесса, увеличить срок годности получаемого отвердителя, а также улучшить качество эпоксидного отвержденного компаунда - а именно повысить морозоустойчивость изделий с его применением.
Поставленная задача решена путем создания способа получения отвердителя, включающего взаимодействие триэтаноламина со сложными эфирами алкилкарбоновых кислот растительных масел, при этом взаимодействие осуществляют в присутствии азотсодержащих красителей в количестве 0,2-4,7 масс.%, а в качестве сложных эфиров алкилкарбоновых кислот используют касторовое масло при содержании триэтаноламина 19,2-77,0 масс.% и касторового масла 18,3-80,6 масс.%, а процесс ведут при 130-220°С в течение 2-6 часов.
Процесс осуществляют в одну стадию. При этом получают отвердитель - этаноламиды касторового масла (этаноламиды КМ), - представляющий собой однородную окрашенную массу, отверждающий эпоксидные олигомеры и композиты на их основе. Полученный продукт характеризуется значениями аминных и кислотных чисел.
Сведения, подтверждающие осуществимость изобретения
Пример 1.
В сосуд-реактор с мешалкой загружают расчетное количество реагентов: 80,6 г касторового масла, 19,2 г триэтаноламина и 0,2 г азотсодержащего красителя - нигрозина. Включают мешалку и обогрев сосуда. Нагревают содержимое реактора до 130°С со скоростью 5 град/мин и выдерживают при этой температуре 6 часов. Контроль процесса осуществляют по совместимости компонентов (наличие или отсутствие расслаивания при выдержке в течение часа) и методом газожидкостной хроматографии. Определяют основные показатели отвердителя и по окончании процесса содержимое реактора сливают в тару.
Пример 2.
В сосуд-реактор с мешалкой загружают расчетное количество реагентов: 49,2 г касторового масла, 49,2 г триэтаноламина и 1,6 г азотсодержащего красителя - кислотного ярко-красного. Включают мешалку и обогрев сосуда. Нагревают содержимое реактора до 150°С со скоростью 5 град/мин и выдерживают при этой температуре 4 часа. Контроль процесса осуществляют по совместимости компонентов (наличие или отсутствие расслаивания при выдержке в течение часа) и методом газожидкостной хроматографии. Определяют основные показатели отвердителя и по окончании процесса содержимое реактора сливают в тару.
Пример 3.
В сосуд-реактор с мешалкой загружают расчетное количество реагентов: 18,3 г касторового масла, 77 г триэтаноламина и 4,7 г азотсодержащего красителя - кислотного желтого светопрочного. Включают мешалку и обогрев сосуда. Нагревают содержимое реактора до 200°С со скоростью 5 град/мин и выдерживают при этой температуре 3 часа. Контроль процесса осуществляют по совместимости компонентов (наличие или отсутствие расслаивания при выдержке в течение часа) и методом газожидкостной хроматографии. Определяют основные показатели отвердителя и по окончании процесса содержимое реактора сливают в тару.
Пример 4.
В сосуд-реактор с мешалкой загружают расчетное количество реагентов: 49,2 г касторового масла, 49,2 г триэтаноламина и 2,4 г азотсодержащего красителя - прямого синего. Включают мешалку и обогрев сосуда. Нагревают содержимое реактора до 220°С со скоростью 5 град/мин и выдерживают при этой температуре 2 часа. Контроль процесса осуществляют по совместимости компонентов (наличие или отсутствие расслаивания при выдержке в течение часа) и методом газожидкостной хроматографии. Определяют основные показатели отвердителя и по окончании процесса содержимое реактора сливают в тару.
Как видно из приведенных примеров, процесс получения отвердителя протекает в одну стадию и характеризуется небольшим временем цикла (2...6 часов). Кроме того, при проведении процесса побочные продукты (глицерин, метанол) не образуются, поэтому не требуется их отделение и утилизация, что повышает экономичность и технологичность процесса.
По агрегатному состоянию заявляемый отвердитель представляет собой жидкость, окрашенную в цвет примененного красителя или продуктов его термических превращений. Аминное число отвердителя 80-440 мг HCL/г, кислотное число - 5-20 мг КОН/г.
Полученный таким способом отвердитель хорошо совмещается с различными диановыми и алифатическими эпоксидными олигомерами (марок ЭД-20, ЭД-16, Э-40, оксилин-6, лапроксиды и др.).
В заданное количество эпоксидного олигомера при перемешивании вводили расчетную массу отвердителя, нагревали до температуры 90°С и гомогенизировали систему, а далее заливали компаунд в изделие, которое помещали в сушилку и отверждали компаунд при 90°С в течение 15 часов. Соотношение эпоксидный олигомер/отвердитель изменяли в интервале 1/1-6/1.
Жидкий композит проверяли на жизнеспособность и готовили из него образцы для испытаний на морозостойкость в интервале температур от -60 до +50°С. Морозостойкость определяли по методике предприятия ОАО ЗиД г. Ковров Владимирской обл. на изделиях, выпускаемых этим заводом. Физико-механические свойства отвержденных композитов определяли по соответствующим ГОСТам: ударная вязкость - ГОСТ 4647-80, твердость - ГОСТ 4670-77, предел текучести при изгибе (сжатии). Определяли также срок годности отвердителя путем изготовления образцов компаундов и определения их способности к отверждению. Максимальный срок испытаний на данный показатель составил 18 месяцев.
Свойства компаундов с полученным заявляемым способом отвердителем приведены в таблице 
Таблица

Свойства эпоксидных компаундов с применением отвердителей - этаноламидов КМ 
Номер примера Срок годности отвердителя, мес. Морозостойкость компаунда Жизнеспособность композита, сутки Ударная вязкость, кДж/м2 Соотношение смола/отвердитель Режим отверждения: температура, °С/время, час 
1 2 3 4 5 6 7 
1 более18 уд 40 11 3,3:1 90/15 
2 более18 уд 35 13 1:1 90/15 
3 более18 уд 50 10 6:1 90/15 
4 более20 уд 45 12 1:1 90/15 
прототип 10 неуд 30 9 6:1 100/3 
неуд 30 9 6:1 90/15 
неуд 15 9 2,5:1 120/1 
неуд 15 9 2,5:1 90/15 

Испытания показали, что на момент завершения работы срок годности отвердителя превышал аналогичный показатель для прототипа в 2 раза. Образцы изделий, изготовленных с применением отвердителя - этаноламидов КМ, - полученного по заявляемому способу, выдерживают испытания на морозостойкость (удовлетворительная). Морозостойкость изделий с отвердителем-прототипом неудовлетворительная. По показателю жизнеспособности получаемые компаунды превосходят прототип (35-50 и 30 суток соответственно). Кроме того, испытания показали, что физико-механические свойства отвержденных компаундов (пределы текучести, твердость по Бринелю) лежат на уровне прототипа или превосходят его. Твердость по Бринелю: прототип - 118, заявляемый образец - 120-125 мПа. Пределы текучести (при сжатии/при изгибе): прототип - 115/90, заявляемые образцы - 118/105 мПа. По показателю "ударная вязкость" заявляемые образцы также превосходят прототип (см. таблицу).
Таким образом, в интервале заявленных параметров способа получения отвердителя и при соотношении эпоксидный олигомер/отвердитель от 6:1 до 1:1 поставленная задача достигается. Заявляемый отвердитель - этаноламиды КМ - позволяет получить эпоксидные композиты с высокой жизнеспособностью, их способностью отверждаться как при обычных (нормальных) условиях, так и при нагреве. Полимерные эпоксидные материалы, получаемые с применением заявляемого отвердителя, обладают высокими физико-механическими свойствами и дополнительно, в отличие от прототипа, являются морозостойкими.



ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ получения отвердителя для эпоксидных олигомеров и композитов на их основе путем взаимодействия триэтаноламина со сложными эфирами алкилкарбоновых кислот растительных масел, отличающийся тем, что взаимодействие осуществляют в присутствии азотсодержащих красителей в количестве 0,2-4,7 мас.%, а в качестве сложных эфиров алкилкарбоновых кислот используют касторовое масло при содержании триэтаноламина 19,2-77 мас.% и касторового масла 18,3-80,6 мас.%, а процесс ведут при 130-220°С в течение 2-6 ч.