СПОСОБ ЗАЩИТЫ ОТ КОРРОЗИИ И НАВОДОРОЖИВАНИЯ СТАЛИ В ВОДНО-СОЛЕВЫХ СРЕДАХ

СПОСОБ ЗАЩИТЫ ОТ КОРРОЗИИ И НАВОДОРОЖИВАНИЯ СТАЛИ В ВОДНО-СОЛЕВЫХ СРЕДАХ


--- Закажите полную версию данного патента ---
RU (11) 2283369 (13) C1

(51) МПК
C23F 11/14 (2006.01) 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 25.10.2007 - действует 

--------------------------------------------------------------------------------

Документ: В формате PDF 
(14) Дата публикации: 2006.09.10 
(21) Регистрационный номер заявки: 2005100560/02 
(22) Дата подачи заявки: 2005.01.11 
(24) Дата начала отсчета срока действия патента: 2005.01.11 
(45) Опубликовано: 2006.09.10 
(56) Аналоги изобретения: RU 2151819 C1, 27.06.2000. US 4087597, 02.05.1978. US 4057390, 08.11.1977. 
(72) Имя изобретателя: Мямина Анжела Алексеевна (RU); Белоглазов Сергей Михайлович (RU) 
(73) Имя патентообладателя: Калининградский государственный университет (RU) 
(98) Адрес для переписки: 236041, г.Калининград, ул. А. Невского, 14, Калининградский государственный университет, УНИР, патентоведу 

(54) СПОСОБ ЗАЩИТЫ ОТ КОРРОЗИИ И НАВОДОРОЖИВАНИЯ СТАЛИ В ВОДНО-СОЛЕВЫХ СРЕДАХ

Способ относится к защите от коррозии деталей, машин, конструкций и сооружений из углеродистых и низколегированных сталей, которые по условиям эксплуатации контактируют с водными растворами солей, кислот, с промышленными и хозяйственно-бытовыми сточными водами, морской водой, а также увлажненными почвами. Способ включает введение ингибитора, при этом в качестве ингибитора применяют соль аминоэфира общей формулы:



где R: -СН2С6Н5 ; -СН(С6Н5)2; -СН(С6 Н5)3; -СН2СН3; -СН(СН 3)2; -С(СН3)3; R': -СН3; -С2H5, -С3Н 7, -ОСН3; -ОС2H5; -ОС 3Н7; R": 2HCl; 2НВr; HCl·HBr; 2HF; HCl·HF; HBr·HF. Технический результат: получение ингибитора коррозии, сочетающего в себе свойства биоцида и ингибитора наводороживания стали одновременно, прогрессивное снижение скорости коррозии стали с увеличением концентрации вводимого органического вещества. 8 табл., 1 ил. 




ОПИСАНИЕ ИЗОБРЕТЕНИЯ


Предлагаемое изобретение относится к защите деталей, машин, конструкций и сооружений из углеродистых и низколегированных сталей, которые по условиям эксплуатации контактируют с водными растворами солей, кислот, с промышленными и хозяйственно-бытовыми сточными водами, морской водой, а также увлажненными почвами. В этих случаях на поверхности стали часто складываются анаэробные условия, способствующие развитию сульфатредуцирующих бактерий (СРБ). Специфичность коррозионной среды, формируемой при участии СРБ, состоит в том, что они выделяют в нее сероводород и органические кислоты. Эти продукты метаболизма СРБ сильно ускоряют коррозионное разрушение сталей, а сероводород является к тому же еще и сильным стимулятором абсорбции водорода сталью, приводящей к выраженному проявлению водородной хрупкости, которая проявляется тем сильнее, чем больше содержание углерода в стали, то есть на высокопрочных и пружинных сталях.

Известен ингибитор наводороживания стали по а.с. №503942, М. кл. C 25 F 3/06, 1975, применяемый в кислой среде в процессе катодной обработки, однако недостатком этого ингибитора является то, что он не обладает биоцидными свойствами по отношению к СРБ.

Наиболее близким аналогом предложенного изобретения является ингибитор микробиологической коррозии и наводораживания стали в водно-солевых средах, содержащих сульфатредуцирующие бактерии по патенту РФ №2151819, М. кл. C 23 F 11/14, опубл. 27.06.2000, Бюл. №18, в котором в качестве ингибитора используют производные триазина. Однако некоторые из их представителей (симазин, прометрин, зеазин) являются хорошо известными гербицидами - искусственно созданными веществами, применяемыми против сорных растений, используемых в строго определенных допустимых концентрациях. Их применение, хранение, производство, транспортировка и утилизация должны соответствовать требованиям Федерального закона №109-ФЗ от 19.06.97 г. «О безопасном обращении с пестицидами и агрохимикатами», «Правилам по хранению, применению и транспортировке пестицидов и агрохимикатов», утвержденным Министерством сельского хозяйства РФ, Министерством здравоохранения РФ, 29.04.99 г. Поэтому предпочтительно применять более экологически безопасные, умеренно или малотоксичные соединения, к числу которых, по мнению ученых, относятся и соли аминоэфиров.

Целью данного изобретения является применение ингибитора коррозии, сочетающего в себе свойства биоцида и ингибитора наводороживания стали одновременно.

Указанная цель достигается тем, что в качестве ингибиторов коррозии и наводороживания стали в среде, содержащей сульфатредуцирующие бактерии, путем введения ингибиторов, применяют соли аминоэфира. Соли аминоэфиров являются умеренно или малотоксичными соединениями, обладают выраженными антимикробными свойствами.

Причем используют соединения общей формулы:



где: R: -СН2С6Н5 ; -СН(С6Н5)2; -СН(С6 Н5)3; -СН2СН3; -СН(СН 3)2; -С(СН3)3;

R': -СН3; -С2H5, -С3Н 7, -ОСН3; -ОС2H5; -ОС 3Н7;

R": 2HCl; 2НВr; HCl·HBr; 2HF; HCl·HF; HBr·HF.

Техническим результатом предложенного изобретения является получение ингибитора коррозии, сочетающего в себе свойства биоцида и ингибитора наводороживания стали одновременно, обеспечивающего прогрессивное снижение скорости коррозии стали с увеличением концентрации вводимого органического вещества.

Заявляемые производные аминоэфиров представляют собой галогеноводородные или смешанные соли. Их молекулы содержат три основных центра адсорбции, которыми служат два атома азота и атом кислорода эфирной группы. Определяющей силой связи в процессе адсорбции молекул ингибитора на поверхности защищаемой стали является электронная плотность на указанных атомах. У атомов азота обеих иминогрупп имеются алкил- или алкоксиароматические заместители, увеличивающие электронную плотность на атомах N. Согласно теоретическим представлениям лучшим ингибитором должно быть соединение 3 (таблица 8), так как в его молекуле около атома кислорода находятся электронодонорные алкильные заместители, смещающие на него электронную плотность. Однако проявлению хорошей экранирующей способности этим соединением мешает стерический эффект трех метальных групп у атома углерода, связанного с эфирным кислородом.

Два симметричных фенильных радикала в концевых положениях у соединений 1, 2 и 4 (таблица 8) способствуют экранированию поверхности металла, так как -электроны ароматических колец участвуют в адсорбции, вступая во взаимодействие с поверхностными атомами железа, хотя электронная плотность на атоме кислорода несколько ослабляется двумя электрофильными фенильными группами. Соединение 4 обладает лучшим ингибирующим коррозию действием.

Таким образом, образование адсорбционных связей между молекулами ингибитора и поверхностными атомами Fe стали носит хемосорбционный характер и сила связи зависит от электронной плотности на гетероатомах молекулы, а также от взаимодействия -электронов ароматических колец с металлической поверхностью.

Кроме того, заявленные органические соединения в кислых средах ведут себя как катионактивные. При попадании в водно-солевую среду они частично (в большей или меньшей степени - в зависимости от рН среды и рК соединения) диссоциируют с образованием органических катионов. Поверхность углеродистых сталей в коррозионной среде, формирующейся в результате жизнедеятельности СРБ, из-за образования сульфидных мостиков приобретает обычно отрицательный заряд. Это создает предпосылки для электростатического взаимодействия (электросорбции) частиц ингибитора в катионной форме с поверхностью стали.

Известно, что соли аминоэфиров являются малотоксичными при различных способах введения, физиологически активными соединениями, обладающими хорошо выраженными антимикробными свойствами. Их легко получить из аминоэфиров, которые проявляют длительное обезболивающее, антигипертензивное и антиаритмическое действие. Местноанестезирующая активность некоторых из них превышает активность известных в мировой практике анестетиков в 5-7 раз. Аминоэфиры обладают высоким терапевтическим индексом, большой широтой фармакологического действия и являются перспективными для создания на их основе новых лекарственных средств для профилактики и лечения сердечно-сосудистых заболеваний.

Для испытания заявляемых соединений использовали их растворы в водно-солевой среде состава (табл.1)

Таблица 1 
Состав среды Постгейта "Б" 
№, п/п Название соединения и его Количество, г/л 
1 Хлорид натрия 7.5 
2 Сульфат магния 1.0 
3 Сульфат натрия 2.0 
4 Карбонат натрия 1.0 
5 Дигидроортофосфат натрия 0.5 
6 Лактат кальция 2.0 


В коррозионных исследованиях применяли образцы мягкой стали Ст 3. Образцы предварительно шлифовали наждачной бумагой, обезжиривали венской известью и стерилизовали ртутно-кварцевой лампой.

СРБ являются анаэробной культурой, то есть растворенный в среде кислород вызывает их переход в латентное состояние. Для создания анаэробных условий среду стерилизовали кипячением, затем инокулировали накопительной культурой СРБ, полученной пересевом пробы из природного источника. В момент загрузки образцов 1 мл такой среды содержал 4,0·10 7 клеток сульфатредуцирующих бактерий рода Desulfovibrio.

Герметически закрытые пробирки с образцами помещали в термостат (37°С). Спустя 48 ч после внесения накопительной культуры в стерильную среду образцы мягкой стали Ст 3 заменяли на новые.

Коррозионные процессы на стали изучали гравиметрическим, потенциометрическим и потенциостатическим методами.

Наблюдения за жизнедеятельностью СРБ вели путем ежедневного подсчета под микроскопом численности микроорганизмов с помощью камеры Горяева в фазовом контрасте. Концентрацию сульфатного остатка определяли йодометрическим титрованием по калибровочному графику. Величины рН и редокс-потенциала сред определяли потенциометрически. Содержание водорода определяли методом послойного анодного растворения стальных образцов.

Сущность метода заключается в определении убыли концентрации растворенного в электролите кислорода, взаимодействующего в присутствии платинового катализатора с выделяющимся при анодном растворении стали водородом. Концентрацию растворенного в электролите кислорода до и после анодного растворения определяли фотометрически по методу Ковальцева и Алесковского с применением в качестве реагента на кислород сафранина Т.

После подготовки поверхности образец изолировали так, чтобы рабочая поверхность составляла 1,8 см 2. Затем образец анодно растворяли при строго поддерживаемой плотности тока Da=±0,02 А/см2 (I=36 мА). Пробы анолита отбирали через каждые 20 мин и заполняли кювету фотометра. Добавляли 0,4 мл лейкосафранина и перемешивали раствор в кювете магнитной мешалкой. Измеряли оптическую плотность и по результатам измерений определяли содержание водорода в растворенном слое металла по графику, полученному на основании формулы:



где Vэл - объем электролита, мл;

1,429 - масса 1 мл 02, мг;

m - масса растворенного слоя металла, мг;

C - изменение концентрации кислорода в анолите после растворения поверхностного слоя по сравнению с концентрацией кислорода в анолите до растворения.

Толщину слоя адсорбированного водорода определяли по формуле:



где m - масса растворенного слоя металла, г;

Sобр - площадь стального образца, см2;

d=7,8 г/см3 - плотность стали.

Обезжиренные и облученные УФ-лампой образцы и заявляемые вещества вводили в коррозионную среду спустя 48 ч, необходимых для развития СРБ в коррозионной среде, и сразу же снимали первые показания физико-химических параметров (электродного потенциала стальной поверхности, окислительно-восстановительного потенциала и водородного показателя коррозионной среды, концентрации биогенного сероводорода, количества бактериальных клеток).

Значения электродного потенциала ( ) стального образца в присутствии всех заявляемых органических соединений на третьи сутки эксперимента смещаются в сторону более положительных значений. Наибольшее облагораживание наблюдается в присутствии добавки №4 (таблица 2). Наименьший сдвиг значений вызвала добавка №1.

Таблица 2 
Изменение значений электродного потенциала стали при увеличении концентрации заявляемых веществ на 72-й час экспозиции 
Соединение Электродный потенциал стали, мВ, при различных концентрациях веществ, ммоль/л 
0.5 1.0 2.0 4.0 5.0 10.0 
1 -630 -627 -621 -615 -610 -616 
2 -626 -620 -611 -605 -598 -591 
3 -620 -617 -602 -587 -557 -542 
4 -610 -603 -584 -562 -548 -523 


На 3-4 сутки эксперимента наблюдалось смещение и окислительно-восстановительного потенциала ( h) в сторону более положительных значений по сравнению с контрольной серией. Причем сдвиг h тем сильнее, чем больше концентрация заявляемых веществ. Наибольший сдвиг h наблюдался в присутствии соед. №4, а наименьший при введении соед. №1 (таблица 3).

В присутствии всех заявляемых органических веществ после завершения жизненного цикла микроорганизмов (7 сутки эксперимента) значения h незначительно смещаются в сторону более отрицательных значений.

Таблица 3 
Окислительно-восстановительный потенциал коррозионной среды с описываемыми веществами при экспозиции 72 ч 
Соединение Редокс-потенциал среды, мВ, при концентрациях веществ, ммоль/л 
0.5 1.0 2.0 4.0 5.0 10.0 
1 300 297 290 283 271 259 
2 319 305 296 274 259 232 
3 325 301 292 263 250 227 
4 340 330 305 277 230 219 


В присутствии всех заявляемых соединений на 4 сутки экспозиции наблюдалось смещение водородного показателя среды (рН) в сторону слабокислых значений по сравнению с контролем. Как правило, этот сдвиг был тем сильнее, чем больше концентрация заявляемых веществ. Так соед. №4 при С=1 ммоль/л вызывает наибольшее смещение рН от 8,9 до 8,1, а при больших концентрациях (С=5,0 ммоль/л) - до значений 6,1. В дальнейшем, начиная с шестых суток экспозиции, во всех случаях в присутствии солей аминоэфиров рН монотонно смещался в сторону щелочных значений. Из всех исследованных солей аминоэфиров наиболее сильное смещение рН среды в щелочную область наблюдали в средах с добавкой №4 (таблица 4).

Таблица 4 
Изменение водородного показателя коррозионной среды с увеличением концентрации вводимых веществ на 72-й час экспозиции 
Соединение Водородный показатель среды Постгейта 'Б' при концентрациях исследуемых веществ, ммоль/л 
0.5 1.0 2.0 4.0 5.0 10.0 
1 7.2 7.5 7.7 7.7 7.8 7.3 
2 7.3 7.4 7.4 7.5 7.5 7.1 
3 7.7 7.6 7.4 7.3 7.2 6.7 
4 7.6 7.5 7.5 7.4 7.3 6.9 


На 3-4 сутки эксперимента в стерильной среде наблюдался "всплеск" численности СРБ. В пробах с заявляемыми соединениями, наоборот, через сутки после введения веществ численность клеток резко уменьшалась. Спустя 48 ч наблюдалось незначительное увеличение количества клеток СРБ, что связано со способностью бактерий приспосабливаться к изменениям условий среды. Затем, по мере истощения питательных свойств среды, численность СРБ снижалась монотонно. Соединения №4 и №3 вызывают большее уменьшение численности микроорганизмов (таблица 5).

Таблица 5 
Изменение количества микробных клеток при увеличении концентрации заявляемых веществ на 72-й час экспозиции 
Соединение Количество микробных клеток, ед·10-7 мл -1 при концентрациях описываемых веществ, ммоль/л 
0.5 1.0 2.0 4.0 5,0 10.0 
1 353 349 324 213 300 291 
2 307 300 284 253 220 261 
3 284 279 271 264 260 254 
4 285 283 276 270 275 250 


Спустя сутки после введения в коррозионную среду солей аминоэфиров наблюдалось уменьшение содержания основного метаболита бактерий - сероводорода. По мере завершения жизненного цикла СРВ, концентрация сероводорода принимает постоянное значение. Соединение №4 вызвало наибольшее снижение концентрации сероводорода в коррозионной среде (таблица 6).

Таблица 6 
Изменение содержания сероводорода при увеличении концентрации заявляемых веществ на 96-й час экспозиции 
Соединение Содержание сероводорода, мг/л, при различных концентрациях веществ, ммоль/л 
0.5 1.0 2.0 4.0 5.0 10.0 
1 85 83 82 81 80 74 
2 81 79 80 82 83 72 
3 84 82 83 85 87 63 
4 82 80 72 63 67 57 


Из таблицы 7 видно, что скорость коррозии стали в присутствии заявляемых веществ равномерно снижается с увеличением концентраций вводимых органических веществ, доходя до весьма малых значений. В присутствии соединения №4 скорость коррозии минимальна.

По степени защиты корродирующего металла описываемые соли аминоэфиров можно расположить в ряд: №4>№3>№2>№1. Ингибиторы №4 и №3 обладают наилучшими из описываемых заявляемых веществ ингибиторными и биоцидными свойствами.

Действие заявляемых соединений на коррозию хорошо согласуется с их действием на водородосодержание приповерхностных слоев стали, коррелировавшей в ингибированной среде с СРБ.

На чертеже представлена зависимость содержания водорода от глубины растворенного слоя стальных образцов в присутствии солей аминоэфиров. Уже при концентрации обсуждаемых органических веществ 1 ммоль/л максимальное водородосодержание у образца, корродировавшего в присутствии соед. №4, уменьшается почти в два раза по сравнению с максимальным водородосодержанием образца, корродировавшего в среде без органических ингибиторов.

Накопление поглощенного водорода в относительно тонком поверхностном слое стали - 10...15 мкм во всех случаях применения исследуемых органических веществ связано с тем, что в поверхностных слоях стали, имеющих особое напряженно-деформированное состояние, образуется большое число коллекторов, заполненных молекулярным водородом, часть из которых, находящаяся в непосредственной близости от поверхности, раскрывается наружу и водород из этого слоя частично десорбируется. Но частично он проникает со временем в более глубоко лежащие слои.

Образующиеся коллекторы уменьшают вероятность проникновения диффундирующих в стали протонов в глубинные слои, т.к. при выходе протонов на внутреннюю поверхность коллектора происходит их объединение с электронами и молизация образующихся атомов водорода, что ведет к увеличению давления молекулярного водорода в коллекторе. Диффузия водорода в глубинные слои, очевидно, осуществляется уже через деформированный метал, окружающий коллекторы. Вероятность обратной диссоциации молекул водорода на атомы внутри коллекторов при комнатной температуре ничтожно мала, поэтому заключенный в коллекторах водород является недиффузионноспособным.

Коллекторы, заполненные газообразным водородом и расположенные в относительно тонком приповерхностном слое стали, играют роль своеобразного барьера, регулирующего поток водорода, проникающего в глубинные слои стали. Количество атомов - протонов, проникающих через этот барьер, очевидно, мало, т.к. концентрация водорода в глубинных слоях невелика.

При исследовании действия солей аминоэфиров на водородосодержание стали установлена та же последовательность их расположения по эффективности действия на наводороживание, как и на коррозию стали, и наибольшую эффективность проявило соединение №4.

Следует отметить, что исследования солей аминоэфиров проводились при С=0,5...10 ммоль/л, но наиболее выгодно и целесообразно применение этих веществ в качестве ингибиторов коррозии и наводороживания стали при средних концентрациях.

Таблица 7 
ЗНАЧЕНИЕ СКОРОСТЕЙ КОРРОЗИИ И ЗАЩИТНОГО ЭФФЕКТА ОРГАНИЧЕСКИХ ДОБАВОК В ЗАВИСИМОСТИ ОТ КОНЦЕНТРАЦИИ 
п/п НАЗВАНИЕ СОЕДИНЕНИЯ Концентрация, ммоль/л Скорость коррозии, г/м сут Защитный эффект, % 
1 2 3 4 5 
Без ингибитора 0,0 0,047 0 
1. Гидробромид-гидрохлорид 2-бензгидрилокси-1,3-бис-(N-п-метоксифенил-амино)пропана 0,5 0,073 8 
1,0 0,068 18 
2,0 0,065 14 
5,0 0,029 63 
2. Гидробромид-гидрохлорид 2-бензгидрилокси-1,3-бис-(N-п-толлиламино) пропана 0,5 0,074 6 
1,0 0,061 23 
2,0 0,054 32 
5,0 0,019 76 
3. Дигидрохлорид 2-трет.-бутилокси-1,3-бис-(N-м-толлиламино) пропана 0,5 0,069 13 
1,0 0,067 28 
2,0 0,050 37 
5,0 0,009 89 
4. Дигидрохлорид 2-бензил-окси-1,3-бис-(N-п-толлиламино)пропана 0,5 0,067 15 
1,0 0,068 18 
2,0 0,041 48 
5,0 0,004 95 







ФОРМУЛА ИЗОБРЕТЕНИЯ


Способ защиты от коррозии и наводороживания стали в водно-солевых средах, содержащих сульфатредуцирующие бактерии, путем введения ингибитора, отличающийся тем, что в качестве ингибитора применяют соль аминоэфира общей формулы



где R: -СН2С6Н5 ; -СН(С6Н5)2; -СН(С6 Н5)3; -СН2СН3; -СН(СН 3)2; -С(СН3)3;

R': -СН3; -С2H5, -С3Н 7, -ОСН3; -ОС2H5; -ОС 3Н7;

R": 2HCl; 2НВr; HCl·HBr; 2HF; HCl·HF; HBr·HF.






ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к СТРОЙИНДУСТРИИ: строительные составы, смеси и композиции для производства строительных материалов и ведения строительных работ, бетон, специальный бетон, добавки для бетона, влияющие на его физические и химические свойства, специальные строительные составы, смеси и композиции обладающие гидроизолирующими, теплозащитными, звукоизоляционными, антикоррозийными, герметизирующими, радиационно-защитными свойствами и способы их получения, лакокрасочные, клеевые составы и композиции, строительные изделия, окна и двери. шторы и жалюзи. фурнитура, гарнитура и комплектующие, устройство кровли, крыш зданий и сооружений кровельные материалы и изделия. приспособления и устройства, устройство покрытий полов. наливные полы. смеси и композиции, строительство и ремонт гидротехнических сооружений, технологии строительства и ремонтно-строительные работы при возведении объектов промышленного и гражданского назначения, новые технологии и способы ведения ремонтно-строительных работ, строительная техника и оборудование для производства строительных материалов и ведения строительных работ.



Новые технологии и изобретения в стройиндустрии




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "и" означает, что будут найдены только те страницы, где встречается каждое из ключевых слов. Например, при запросе "силикатный кирпич" будет найдено словосочетание "силикатный кирпич". При использовании режима "или" результатом поиска будут все страницы, где встречается хотя бы одно ключевое слово ("силикатный" или "кирпич").

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+силикатный -кирпич".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "кирпич" будут найдены слова "кирпич", "кирпичи" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу "кирпич!".


Строительные составы, смеси и композиции для производства строительных материалов и ведения строительных работ | Специальные строительные составы, смеси и композиции обладающие гидроизолирующими, теплозащитными, звукоизоляционными, антикоррозийными, герметизирующими, радиационно-защитными свойствами и способы их получения | Лакокрасочные, клеевые составы и композиции | Строительные изделия | Новые технологии и способы ведения ремонтно-строительных работ | Окна и двери. Шторы и жалюзи. Фурнитура, гарнитура и комплектующие | Устройство кровли, крыш зданий и сооружений кровельные материалы и изделия. Приспособления и устройства | Бетон. Добавки для бетона, влияющие на его физические и химические свойства | Устройство покрытий полов. Наливные полы. Смеси и композиции | Строительство и ремонт гидротехнических сооружений | Технологии строительства и ремонтно-строительные работы при возведении объектов промышленного и гражданского назначения | Строительная техника и оборудование для производства строительных материалов и ведения строительных работ | Способы производства строительных материалов из древесины и отходов деревообработки


Рейтинг@Mail.ru