МЕХАТРОННЫЙ СТРОИТЕЛЬНЫЙ БЛОК

МЕХАТРОННЫЙ СТРОИТЕЛЬНЫЙ БЛОК


--- Закажите полную версию данного патента ---
RU (11) 2304204 (13) C1

(51) МПК
E04C 1/40 (2006.01) 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 13.11.2007 - действует 

--------------------------------------------------------------------------------

Документ: В формате PDF 
(21) Заявка: 2005139174/03 
(22) Дата подачи заявки: 2005.12.15 
(24) Дата начала отсчета срока действия патента: 2005.12.15 
(45) Опубликовано: 2007.08.10 
(56) Список документов, цитированных в отчете о поиске: RU 2003102636 А, 20.10.2004. RU 94042324 А1, 10.10.1996. RU 2071647 С1, 10.01.1997. RU 2258117 C2, 10.08.2005. RU 2133922 C1, 27.07.1999. 
(72) Автор(ы): Король Елена Анатольевна (RU); Макаров Герман Вадимович (RU); Слесарев Михаил Юрьевич (RU); Теличенко Валерий Иванович (RU) 
(73) Патентообладатель(и): Государственное образовательное учреждение высшего профессионального образования Московский государственный строительный университет (RU) 
Адрес для переписки: 129337, Москва, Ярославское ш., 26, МГСУ УНиИД, руководителю отдела патентования М.Ю. Слесареву 

(54) МЕХАТРОННЫЙ СТРОИТЕЛЬНЫЙ БЛОК

Изобретение относится к строительству, в частности к многослойным строительным блокам и строительным наборным камням, используемым при возведении стен зданий и сооружений. Строительный блок содержит внешний газонепроницаемый слой и пористую сердцевину. Наружная основная поверхность блока снабжена водоотливом, датчиком температуры - биметаллической пластиной и солнечной батареей. Между наружной и внутренней поверхностями блока установлены вакуумный насос с приводом от солнечной батареи и емкость для сбора воды. Насос снабжен трубками, одна из которых соединяет насос с пористой сердцевиной, а другая - с отверстием на наружной поверхности блока. Емкость для сбора воды снабжена трубками, одна из которых соединяет емкость с водоотливом, а другая, соединяющая указанную емкость с пористой сердцевиной блока, имеет вентиль, управляемый биметаллической пластиной, имеющей регулировку на запирание вентиля при наружной температуре ниже комнатной и открытие его при наружной температуре выше комнатной. Технический результат: повышение эксплуатационных свойств. 2 з.п. ф-лы, 2 ил. 




ОПИСАНИЕ ИЗОБРЕТЕНИЯ


Изобретение относится к строительству, в частности к многослойным строительным блокам и строительным наборным камням, используемым при возведении стен зданий и сооружений.

Известен аналог - искусственный строительный двухкомпозитный камень и способ его изготовления RU 5063604, Е04С 1/40 от 1992.06.16. Известный аналог относится к строительным материалам, предназначенным для возведения стеновых ограждающих конструкций зданий и сооружений различного назначения, и применяется в печном строительстве (металлургические агрегаты, сушильные камеры, отопительные печи и т.п.) и других случаях, когда применение таких камней целесообразно. Конструкция такого камня представляет собой единый блок композитных элементов, состоящий из сердечника, выполненного из малотеплопроводного и легкого материала, и армированной бетонной оболочки. Такие камни имеют уменьшенную объемную массу, а за счет объема сердечника, занимающего 40-60% всего объема камня, имеют улучшенные теплотехнические свойства, что способствует энергосбережению за счет уменьшения потребления тепловой энергии ввиду снижения тепловых потерь в процессе эксплуатации зданий и сооружений, выполненных с применением этих камней. Недостатком известного аналога является невозможность точного подбора параметров композитных элементов для обеспечения оптимальных теплотехнических свойств ограждающей конструкции.

Известен аналог - строительный наборный вертикально-щелевой камень с газослойной теплоизоляцией RU 2258117, Е04С 1/00 от 2003.09.12. Известный камень предназначен для кладки наружных стен отапливаемых зданий. Тепловые потери стен, возведенных из этих камней, составляют не более 15 Вт/(м2 ч), что экономичнее старых стен в 3-3,5 раза. Наружные стены отапливаемых зданий могут возводиться из этих камней толщиной в 1 камень на любые зимние (расчетные для отопления) температуры от -10 до -60°С при толщине стены от 250 до 650 мм. Камень кладется поперек стены так, чтобы его стенки-мембраны были параллельны плоскости стены. Верх, внутренняя, наружная стороны камня маркируются. Толщина воздушных слоев предпочтительно одного размера для всей серии камня выбирается от 10 до 25 мм. Толщина стенок мембран камня от первого до 7-10 этажа увеличивается пропорционально этажности здания от 10 до 30 мм.

Передача тепла в наборном камне происходит следующим образом. От внутренней оштукатуренной поверхности отапливаемого помещения передается со снижением температуры через первую стенку-мембрану, теплоотражающий экран (слой), воздушный промежуток (параллельно с передачей тепла через теплопроводящий бордюр), теплоотражающий экран (слой) на следующую стенку-мембрану. Передача тепла через воздушный слой осуществляется путем теплового излучения за счет теплопроводности воздуха и за счет его конвекции. Теплоотражающие слои уменьшают лучистую составляющую теплопередачи между соседними стенками-мембранами, а оптимальный выбор толщины слоя воздуха минимизирует количество слоев, при котором доля передачи тепла за счет конвекции остается малой по сравнению с остальными составляющими теплопередачи. Передача тепла через материал бордюров крышек от мембраны к мембране выбирается достаточно невысокой за счет минимизации площади теплового контакта по бордюру. Процесс передачи тепла наружу повторяется аналогично во всех слоях со ступенчатым увеличением теплового сопротивления, обеспечивающего проектный тепловой поток (в соответствии с новыми нормами не более 15 Вт(м2ч)).

Недостатком указанного аналога по патенту RU 2258117, Е04С 1/00 от 2003.09.12 является то, что все перечисленные виды тепловых потерь учитываются компьютерной термодинамической программой расчета камня в зависимости от стационарных исходных данных с выдачей неизменяемых конструктивных параметров камня и не могут быть изменены при изменении климатических условий работы камня. Однако стены, сложенные из таких камней, практически никогда не работают в теоретических точках с параметрами, совпадающими со значениями рассчитанного режима. Реальные стены работают при постоянном изменении температуры и влажности воздуха, а также изменяющейся интенсивности и направленности воздушного потока как снаружи, так и изнутри помещения. Эти колебания параметров вызваны суточными и сезонными изменениями воздушных потоков перемещающихся на противоположных сторонах стены.

Известен ближайший аналог - прототип - вакуумированная панель, предназначенная для тепловой изоляции тела, имеющего неплоские поверхности - по патенту RU 2003102636, F16L 59/06 от 2004.10.20.

Известная вакуумированная панель выполнена с двумя основными поверхностями и содержит гибкую оболочку, изготовленную из одного или более барьерных листов, и наполнитель, образованный по меньшей мере из двух плит из открытопористого вспененного полимера, уложенных одна на другую, при этом каждая плита имеет толщину, составляющую от приблизительно 2 до 8 мм.

Известная вакуумированная панель по патенту RU 2003102636 может дополнительно содержать листы пластика, размещенные между каждыми двумя соседними плитами, для их скольжения относительно друг друга, а также плиты, изготовленные из пенополиуретана, а также она может содержать газопоглотитель или устройство для поглощения газа, а также содержит по меньшей мере одно вещество, химически сорбирующее влагу, и по меньшей мере один компонент, выбранный из оксида переходного металла и сплава на основе бария и лития.

Недостатком указанного аналога по патенту RU 2003102636 является то, что все перечисленные виды газо- и влагопоглотителей и конструктивные особенности вакуумированной панели не обеспечивают динамического приспособления теплозащитных свойств панели к изменяющимся параметрам воздушных потоков, перемещающихся на противоположных сторонах стены.

Задачей настоящего изобретения является создание мехатронного строительного блока, лишенного недостатков прототипа и аналогов и имеющего возможность автоматически приспосабливаться к изменениям температуры и влажности окружающего воздуха, а также изменяющейся интенсивности и направленности воздушного потока как снаружи, так и внутри помещения.

Цель создания предлагаемого изобретения - повышение эксплуатационных свойств строительного блока за счет автоматического регулирования его теплопроводности путем изменения величины вакуума и влажности воздуха внутри пористой сердцевины мехатронного строительного блока.

На Фиг.1(а,б) изображен сам блок с основными конструктивными элементами и схема соединения взаимодействующих частей мехатронного строительного блока.

Наружная панель мехатронного строительного блока 1 имеет на своей поверхности отверстие 2 выпускной трубки вакуумного насоса, солнечную батарею 3, водоотлив 4, отверстие 5 впускающей трубки и датчик температуры 6 (см. Фиг.1а)

Технический эффект достигается тем, что мехатронный строительный блок 1 (см. Фиг.1б) содержит внешний газонепроницаемый слой 9 и пористую сердцевину 8. Внутри блока имеется емкость 11 для воды, которая соединена трубкой 5 с водоотливом 4, снабженным термоэлементом (подогревающий термоэлемент не показан на схеме) и отверстием трубки 5 на внешней поверхности блока. Мехатронный строительный блок содержит также другую трубку 10, снабженную вентилем 12, имеющим возможность автоматического управления от датчика, например, биметаллической пластиной 6 в зависимости от температуры на поверхности блока 1, и трубкой 13 подачи жидкости к центру сердцевины блока 8. Пористая сердцевина 8 блока 1 из центра соединена трубкой 14 с вакуумным насосом 15, который соединен трубкой 7 с отверстием 2, расположенным на внешней поверхности газонепроницаемого слоя 9. Вакуумный насос 15 кинематически соединен с автономным приводом 16 любой известной системы, например электродвигателем, питаемым от солнечной батареи 3. Вентиль 12 мехатронного строительного блока 1 может управляться биметаллической пластиной 6, имеющей регулировку на запирание при температуре ниже комнатной и открытие при температуре выше комнатной.

Работает мехатронный строительный блок следующим образом. При наружной температуре, превышающей комнатную температуру на внутренней стороне блока, вентиль 12 под действием биметаллической пластины 6 открывается и скопившаяся жидкость (атмосферные осадки) поступает (всасывается) по трубке 13 под действием созданного вакуума в полость 8 и орошает пористую сердцевину блока. Теплопроводность из-за заполнения пористой сердцевины 8 влагой и воздухом повышается. При наружной температуре, ниже комнатной, вентиль 12 под действием биметаллической пластины 6 закрывается, и вакуумный насос 15 откачивает воздух вместе с влагой из пористой сердцевины 8, защищенной внешним газонепроницаемым слоем 9. При этом сопротивление теплопередаче у мехатронного строительного блока возрастает. При минусовых температурах наружной поверхности включается термоэлемент для подогрева водоотлива. При недостаточности энергии солнечной батареи привод вакуумного насоса и подогревающий термоэлемент могут подключаться к дополнительному источнику питания.




ФОРМУЛА ИЗОБРЕТЕНИЯ


1. Строительный блок, содержащий внешний газонепроницаемый слой и пористую сердцевину, характеризующийся тем, что наружная основная поверхность блока снабжена водоотливом, датчиком температуры - биметаллической пластиной и солнечной батареей, между наружной и внутренней поверхностями блока установлены вакуумный насос с приводом от солнечной батареи и емкость для сбора воды, при этом насос снабжен трубками, одна из которых соединяет насос с пористой сердцевиной, а другая - с отверстием на наружной поверхности блока, емкость для сбора воды снабжена трубками, одна из которых соединяет емкость с водоотливом, а другая, соединяющая указанную емкость с пористой сердцевиной блока, имеет вентиль, управляемый биметаллической пластиной, имеющей регулировку на запирание вентиля при наружной температуре ниже комнатной и открытие его при наружной температуре выше комнатной.

2. Строительный блок по п.1, отличающийся тем, что между двумя основными поверхностями блока установлен подогревающий термоэлемент.

3. Строительный блок по п.1, отличающийся тем, что вакуумный насос и подогревающий термоэлемент электрически связаны с дополнительным источником питания.








ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к СТРОЙИНДУСТРИИ: строительные составы, смеси и композиции для производства строительных материалов и ведения строительных работ, бетон, специальный бетон, добавки для бетона, влияющие на его физические и химические свойства, специальные строительные составы, смеси и композиции обладающие гидроизолирующими, теплозащитными, звукоизоляционными, антикоррозийными, герметизирующими, радиационно-защитными свойствами и способы их получения, лакокрасочные, клеевые составы и композиции, строительные изделия, окна и двери. шторы и жалюзи. фурнитура, гарнитура и комплектующие, устройство кровли, крыш зданий и сооружений кровельные материалы и изделия. приспособления и устройства, устройство покрытий полов. наливные полы. смеси и композиции, строительство и ремонт гидротехнических сооружений, технологии строительства и ремонтно-строительные работы при возведении объектов промышленного и гражданского назначения, новые технологии и способы ведения ремонтно-строительных работ, строительная техника и оборудование для производства строительных материалов и ведения строительных работ.



Новые технологии и изобретения в стройиндустрии




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "и" означает, что будут найдены только те страницы, где встречается каждое из ключевых слов. Например, при запросе "силикатный кирпич" будет найдено словосочетание "силикатный кирпич". При использовании режима "или" результатом поиска будут все страницы, где встречается хотя бы одно ключевое слово ("силикатный" или "кирпич").

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+силикатный -кирпич".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "кирпич" будут найдены слова "кирпич", "кирпичи" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу "кирпич!".


Строительные составы, смеси и композиции для производства строительных материалов и ведения строительных работ | Специальные строительные составы, смеси и композиции обладающие гидроизолирующими, теплозащитными, звукоизоляционными, антикоррозийными, герметизирующими, радиационно-защитными свойствами и способы их получения | Лакокрасочные, клеевые составы и композиции | Строительные изделия | Новые технологии и способы ведения ремонтно-строительных работ | Окна и двери. Шторы и жалюзи. Фурнитура, гарнитура и комплектующие | Устройство кровли, крыш зданий и сооружений кровельные материалы и изделия. Приспособления и устройства | Бетон. Добавки для бетона, влияющие на его физические и химические свойства | Устройство покрытий полов. Наливные полы. Смеси и композиции | Строительство и ремонт гидротехнических сооружений | Технологии строительства и ремонтно-строительные работы при возведении объектов промышленного и гражданского назначения | Строительная техника и оборудование для производства строительных материалов и ведения строительных работ | Способы производства строительных материалов из древесины и отходов деревообработки


Рейтинг@Mail.ru