СПОСОБ СУШКИ КАПИЛЛЯРНО-ПОРИСТЫХ МАТЕРИАЛОВ

СПОСОБ СУШКИ КАПИЛЛЯРНО-ПОРИСТЫХ МАТЕРИАЛОВ


--- Закажите полную версию данного патента ---
RU (11) 2013724 (13) C1

(51) 5 F26B7/00 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 15.02.2008 - прекратил действие 

--------------------------------------------------------------------------------

(21) Заявка: 4934935/06 
(22) Дата подачи заявки: 1991.03.11 
(45) Опубликовано: 1994.05.30 
(71) Заявитель(и): Архангельский лесотехнический институт им.В.В.Куйбышева; Центральный научно-исследовательский институт механической обработки древесины 
(72) Автор(ы): Дунаев В.Ф.; Дунаева В.В. 
(73) Патентообладатель(и): Дунаев Владимир Федорович; Дунаева Валерия Викторовна 

(54) СПОСОБ СУШКИ КАПИЛЛЯРНО-ПОРИСТЫХ МАТЕРИАЛОВ 

Использование: сушка капиллярно-пористых материалов в деревообрабатывающей промышленности. Сущность изобретения: ультразвуковые колебания вводят в материал путем амплитудной модуляции электрических высокочастотных колебаний гармоническими колебаниями ультразвуковой частоты, которую в процессе сушки выбирают по условию =/Qэ , где частота электрических высокочастотных колебаний; W - частота модуляции; Qэ - эквивалентная добротность контура, в поле конденсатора которого помещают капиллярно-пористый материал. Контроль за величиной осуществляют по глубине модуляции, которая должна быть 70 5% . Преимущества способа проявляются при сушке капиллярно-пористых материалов, в которых присутствует свободная влага. 1 ил. , 1 табл. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение касается сушки капиллярно-пористых материалов.

Известен способ сушки капиллярно-пористых материалов, например картона, асбеста, при котором одновременно с высокочастотным полем на материал воздействуют механическими колебаниями ультразвуковой частоты.

Недостатком способа является большая потеря энергии при передаче колебаний от генератора ультразвуковых колебаний через газообразную среду к материалу вследствие различия волновых сопротивлений газообразной окружающей среды и высушиваемого материала.

Известен также способ сушки капиллярно-пористых материалов, например пиломатериалов, путем их нагревания в неэлектропроводящей жидкости при помощи электродов и воздействия механическими колебаниями ультразвуковой частоты, при этом сушку ведут при температуре жидкости 40-90oC и давлении 2 ати.

Недостатками способа являются, во-первых, потери энергии механических колебаний ультразвуковой частоты при передаче их от генератора через неэлектропроводящую жидкость к материалу, поскольку на границе жидкость-материал происходит отражение ультразвуковой волны из-за неодинаковых волновых сопротивлений жидкости и материала, однако их значения ближе друг к другу, чем в паре газообразная среда-материал; во-вторых, наличие неэлектропроводящей жидкости усложняет способ, поскольку перед каждым процессом сушки требуется специальная подготовка жидкости для поддержания ее неэлектропроводящих свойств; в-третьих, наличие ультразвукового генератора также усложняет способ и увеличивает энергозатраты.

Цель изобретения - повышение эффективности способа сушки путем его упрощения, повышения производительности и снижения энергозатрат.

Это достигается тем, что способ сушки капиллярно-пористых материалов, например древесины, осуществляют путем нагревания материала в электрическом поле высокой частоты и воздействуют ультразвуковыми колебаниями. Ультразвуковые колебания осуществляют в материале путем амплитудной модуляции электрических высокочастотных колебаний гармоническими колебаниями ультразвуковой частоты, которую в процессе сушки выбирают по условию

= где - частота модуляции;

- частота высокочастотных колебаний;

Qэ - эквивалентная добротность контура, в поле конденсатора которого помещают капиллярно-пористый материал.

Применение электромагнитных колебаний без модуляции обеспечивает образование пара внутри капилляров при постоянном избыточном давлении. Пульсации давления влаги и пара увеличивают скорость истечения влаги по капиллярам. Для создания пульсаций высокочастотные электромагнитные колебания модулируют колебаниями ультразвуковой частоты.

Возбуждение ультразвуковых колебаний в материале и нагрев его осуществляют от одного источника - генератора электромагнитных модулированных по амплитуде высокочастотных колебаний.

Частота модуляции = является наибольшей частотой, при которой обеспечивается глубина модуляции 70% . В процессе сушки добротность контура Qэ увеличивается, что при неизменной частоте модуляции приводит к уменьшению глубины модуляции. Поэтому условие = является условием регулирования частоты модуляции в процессе сушки, при которой обеспечивается наибольшая амплитуда колебаний давления влаги и пара, а следовательно, максимум энергии ультразвуковых колебаний, возбуждаемых в свободной влаге. Таким образом, это же условие = является и условием регулирования процесса сушки для повышения производительности и снижения энергозатрат.

Способ может быть осуществлен следующим образом.

Материал, в частности пиломатериал, помещают в высокочастотную сушильную камеру.

На чертеже показана структурная схема генератора электромагнитных высокочастотных модулированных по амплитуде колебаний. Она содержит генератор 1 высокочастотных колебаний частотой = 13,56 МГц, управляемый генератор 2 модулированных колебаний частотой от 0,3 до 2 МГц, смеситель 3, глубина модуляции высокочастотных колебаний на выходе которого составляет 100% , усилитель 4 мощности высокочастотных модулированных колебаний, индуктивность 5 контура нагрузки усилителя, рабочий конденсатор 6, в поле которого помещается высушиваемый материал 7, измеритель 8 глубины модуляции, сумматор 9 для сравнения сигналов устав- ки U (70% ) и измерителя глубины модуляции.

Сигнал от генераторов 1 и 2 поступает на смеситель 3, выходной сигнал которого имеет глубину модуляции 100% и не зависит от частоты модуляции. Усиленный по мощности усилителем 4, он поступает на колебательный контур, состоящий из индуктивности 5 и рабочего конденсатора 6. В точке соединения индуктивности 5 конденсатора 6 и измерителя 8 глубина модуляции зависит от частоты модуляции добротности контура Qэ и равна 70% , если выполняется условие = .

При изменении влажности материала 7, помещенного в поле рабочего конденсатора 6, изменяется добротность контура Qэ, а при неизменной частоте модуляции изменяется и глубина модуляции, регистрируемая измерителем 8. Это изменение глубины модуляции сравнивается сумматором 9 с уставкой U (70% ). Сумматор вырабатывает сигнал управления генератором 2, при этом все время выполняется условие = .

Невыполнение этого условия снижает эффективность процесса сушки: при частотах модуляции, меньших , несколько увеличивается глубина модуляции, но снижается текучесть влаги из-за уменьшения частоты пульсаций давления, а при частотах модуляции, больших , резко снижается глубина модуляции, что также снижает эффект текучести.

Показатели процесса сушки еловых пиломатериалов сечением 22 х 100 мм в поле конденсатора экспериментальной установки мощностью 0,2 кВт приведены в таблице.

Пример 1 является контрольным. Он необходим для определения расчетного времени Т сушки без модуляции электрических колебаний по следующей формуле:

T = , а также для подтверждения того, что при уменьшении глубины модуляции до 0 по сравнению с условием = существенно увеличивается продолжительность времени сушки (в примере 2 - на 28% , в примере 3 - на 34% ), что сопровождается увеличением энергозатрат в том же отношении.

Применение модулированных высокочастотных колебаний при влажности еловых пиломатериалов меньше 22% не дает преимуществ по сравнению с немодулированными колебаниями, поскольку в древесине ели при такой влажности отсутствует свободная влага. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



СПОСОБ СУШКИ КАПИЛЛЯРНО-ПОРИСТЫХ МАТЕРИАЛОВ, например древесины, путем их нагревания в электрическом поле высокой частоты и воздействия ультразвуковыми колебаниями, отличающийся тем, что, с целью повышения эффективности способа путем его упрощения, повышения производительности и снижения энергозатрат, ультразвуковые колебания осуществляют в материале путем амплитудной модуляции электрических высокочастотных колебаний гармоническими колебаниями ультразвуковой частоты , которую в процессе сушки выбирают по условию

= ,

где - частота высокочастотных колебаний;

Qэ - эквивалентная добротность контура, в поле конденсатора которого помещают капиллярно-пористый материал.




ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к СТРОЙИНДУСТРИИ: строительные составы, смеси и композиции для производства строительных материалов и ведения строительных работ, бетон, специальный бетон, добавки для бетона, влияющие на его физические и химические свойства, специальные строительные составы, смеси и композиции обладающие гидроизолирующими, теплозащитными, звукоизоляционными, антикоррозийными, герметизирующими, радиационно-защитными свойствами и способы их получения, лакокрасочные, клеевые составы и композиции, строительные изделия, окна и двери. шторы и жалюзи. фурнитура, гарнитура и комплектующие, устройство кровли, крыш зданий и сооружений кровельные материалы и изделия. приспособления и устройства, устройство покрытий полов. наливные полы. смеси и композиции, строительство и ремонт гидротехнических сооружений, технологии строительства и ремонтно-строительные работы при возведении объектов промышленного и гражданского назначения, новые технологии и способы ведения ремонтно-строительных работ, строительная техника и оборудование для производства строительных материалов и ведения строительных работ.



Новые технологии и изобретения в стройиндустрии




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "и" означает, что будут найдены только те страницы, где встречается каждое из ключевых слов. Например, при запросе "силикатный кирпич" будет найдено словосочетание "силикатный кирпич". При использовании режима "или" результатом поиска будут все страницы, где встречается хотя бы одно ключевое слово ("силикатный" или "кирпич").

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+силикатный -кирпич".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "кирпич" будут найдены слова "кирпич", "кирпичи" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу "кирпич!".


Строительные составы, смеси и композиции для производства строительных материалов и ведения строительных работ | Специальные строительные составы, смеси и композиции обладающие гидроизолирующими, теплозащитными, звукоизоляционными, антикоррозийными, герметизирующими, радиационно-защитными свойствами и способы их получения | Лакокрасочные, клеевые составы и композиции | Строительные изделия | Новые технологии и способы ведения ремонтно-строительных работ | Окна и двери. Шторы и жалюзи. Фурнитура, гарнитура и комплектующие | Устройство кровли, крыш зданий и сооружений кровельные материалы и изделия. Приспособления и устройства | Бетон. Добавки для бетона, влияющие на его физические и химические свойства | Устройство покрытий полов. Наливные полы. Смеси и композиции | Строительство и ремонт гидротехнических сооружений | Технологии строительства и ремонтно-строительные работы при возведении объектов промышленного и гражданского назначения | Строительная техника и оборудование для производства строительных материалов и ведения строительных работ | Способы производства строительных материалов из древесины и отходов деревообработки


Рейтинг@Mail.ru