СПОСОБ ПРОПИТКИ И СУШКИ КАПИЛЛЯРНО-ПОРИСТЫХ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

СПОСОБ ПРОПИТКИ И СУШКИ КАПИЛЛЯРНО-ПОРИСТЫХ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ


--- Закажите полную версию данного патента ---
RU (11) 2010701 (13) C1

(51) 5 B27K5/04, F26B5/02 

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 
Статус: по данным на 28.02.2008 - прекратил действие 

--------------------------------------------------------------------------------

(21) Заявка: 5023263/05 
(22) Дата подачи заявки: 1991.11.21 
(45) Опубликовано: 1994.04.15 
(71) Заявитель(и): Бакулин В.Н.; Бакулин А.В. 
(72) Автор(ы): Бакулин В.Н.; Бакулин А.В. 
(73) Патентообладатель(и): Бакулин Виктор Николаевич 

(54) СПОСОБ ПРОПИТКИ И СУШКИ КАПИЛЛЯРНО-ПОРИСТЫХ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 

Использование: пропитка и сушка капиллярно-пористых материалов с использованием упругого миграционного эффекта и кавитации. Сущность изобретения: способ пропитки и сушки капиллярно-пористых материалов заключается в том, что в материал посредством электродов подают постоянный ток в совокупности с возбуждением в нем мощных ультразвуковых колебаний, причем ультразвуковые воздействия осуществляют в несколько этапов: вначале приводят локальный участок материала в возбужденное состояние и вибровоздействия производят в течение времени, при котором деформации сжатия сменят деформации растяжения, что соответствует оптимальной проницаемости материала. Затем переходят на частоту, равную частоте собственных колебаний материала, и воздействия производят в течение времени, при котором масса материала снизится на 6 - 12% , по сравнению с первоначальным, при сушке, или переходят на частоту собственных колебаний "флюидов", содержащихся в порах, трещинах и капиллярах материала при пропитке, и вибровоздействия производят в течение времени, при котором материал восстанавливает свою первоначальную массу. 2 с. и 5 з. п. ф-лы, 2 ил. 


ОПИСАНИЕ ИЗОБРЕТЕНИЯ



Изобретение относится к строительной, лесной отраслям промышленности и может быть использовано для пропитки и сушки естественных и искусственных капиллярно-пористых материалов, например пиломатериалов или композитов, с использованием упругого миграционного эффекта и эффектов кавитации.

Известен способ сушки изделий из дерева, включающий помещение их в герметичный корпус, создание внутри него температуры 85-100оС в совокупности с созданием внутри корпуса вакуума и выдерживание изделия внутри корпуса в течение 2-3 дней и более.

Известный способ трудоемок, нетехнологичен, не позволяет работать в выбранном режиме температур, использует высокие температуры, от воздействия которых изделия приобретают трещины, дефекты и другой нетоварный вид и теряют свое качество.

Наиболее близким к изобретению является способ пропитки и сушки капиллярно-пористых материалов, включающий воздействие на материал электрического и акустического полей, причем электрическое поле создают постоянным током.

Известный способ не использует структурные особенности капиллярно-пористых материалов, не работает в резонансном режиме и не использует в своем арсенале упругий миграционный эффект и эффекты кавитации в материалах.

Цель изобретения - повышение эффективности, снижение энергоемкости и повышение качества капиллярно-пористых материалов.

Поставленная цель достигается тем, что в способе пропитки и сушки капиллярно-пористых материалов, включающем воздействие на материал электрического и акустического полей, причем электрическое поле создают постоянным током, используют ультразвуковые колебания, амплитуду которых медленно поднимают от минимально возможного уровня до уровня, при котором напряжения в знакопеременной упругой волне достигнут величины, равной 0,2-0,3 от разрушающих напряжений в материале на разрыв в течение времени, при котором масса материала снизится на 6-12% от первоначальной, а вибровоздействия осуществляют в несколько этапов, причем сначала вибровоздействия осуществляют в диапазоне частот от 1 до 20 кГц, в течение времени, при котором деформации сжатия материала сменят деформации растяжения, а затем переходят на частоту, равную частоте собственных колебаний материала.

Ультразвуковые излучатели размещают на торцах материала, и вибровоздействия производят попеременно с одного, а затем другого торца, причем, время вибровоздействия с каждого торца определяют из выражения Т= L/Р, где L - длина материала, м; Р - скорость миграции, скорость перемещения (миграции) флюидов в капиллярах материала под воздействием упругой, волны, м/с.

После потери массы в размере 6-12% от первоначальной нагнетают в материал антисептические растворы и нагнетание производят в течение времени, при котором масса изделия не достигнет прежней величины.

Для повышения гидро- и аэродинамических связей капиллярно-пористых материалов, например пиломатериалов, нагнетают в них растворы поверхностно-активных веществ в совокупности с возбуждением в материале ультразвуковых колебаний, причем амплитуду в знакопеременной упругой волне поддерживают на уровне 0,3-0,5 от величины разрушающих напряжений для материала.

Для низкопористых материалов с целью увеличения их проницаемости нагнетают в них нагретые разупрочняющие растворы, например ПАВ, нагретые до температуры 55-65оС, возбуждают ультразвуковые колебания и инициируют в порах, трещинах и капиллярах материала кавитирующие процессы, причем энергию кавитирующего пузырька, возникающего в зоне разрежения и схлопывающегося в зоне сжатия ультразвуковой волны, определяют из выражения

Е= nРоR3 4/3, где R - размер кавитирующего пузырька, мм;

Ро - давление в порах, трещинах и капиллярах материала в отсутствие ультразвуковой волны, м/с.

С целью интенсификации процессов пропитки и сушки в материале возбуждают ультразвуковые колебания, частоту которых согласуют с собственными частотами флюидов - жидкостей и газовоздушных включений, содержащихся в порах, трещинах и капиллярах материала, и воздействия ультразвуком производят в течение времени, при котором достигают положительного эффекта.

На фиг. 1 приведена схема устройства для реализации способа, где 1 - капиллярно-пористый материал, 2 - электроды, 3 - ультразвуковые излучатели, 4 - источник напряжения постоянного тока, 5 - ультразвуковой генератор, 6 - усилитель с программным управлением, 7 - усилитель мощности, 8 - микропроцессор (микро-ЭВМ).

Способ осуществляют следующим образом.

Обрабатываемый материал 1 помещают между электродами 2, к которым прикладывают разность потенциалов постоянного напряжения от источника 4. Со стороны положительного и отрицательного электродов устанавливают ультразвуковые излучатели 3, которые подключают к входу генератора 5, последовательно соединенного с усилителем 6 с программным управлением и усилителем мощности 7, управляемыми с помощью микропроцессора 8. В результате облучения звуком жидкость в материале понижает свою вязкость, а в порах, трещинах и капиллярах создается ланжевеновое давление излучателем 3, что приводит с одной стороны к более быстрому перемещению (миграции) флюидов-жидкостей и газов, содержащихся в порах, трещинах и капиллярах материала и, следовательно, к более интенсивной сушке при нагревании материала постоянным током, а с другой стороны - при пропитке нагнетают в поры, трещины и капилляры антисептические растворы, предохраняющие материал от внешних воздействий, и ультразвуковое облучение осуществляют на частоте, равной собственной частоте флюидов, содержащихся в порах и трещинах материала.

Ультразвуковое облучение осуществляют в несколько этапов: вначале в диапазоне частот 1-20 кГц, и облучение производят в течение времени, при котором деформации сжатия сменят деформации растяжения, что соответствует оптимальной проницаемости материала, причем амплитуду давления в знакопеременной ультразвуковой волне поддерживают на уровне 0,2-0,3 от разрушающих напряжений на разрыв. При потере массы на 6-12% от первоначального нагнетают в материал антисептические растворы, причем амплитуду давления в знакопеременной волне поддерживают на уровне 0,3-0,5 от величины разрушающих напряжений в течение времени, при котором масса материала не достигнет первоначальной величины. Облучение ультразвуком осуществляют попеременно с торцов сначала с одного торца, а затем с другого, ограничивая время облучения с каждой стороны временем миграции флюидов в данном направлении распространения, определяемого длиной изделия. Скорости миграции флюидов под воздействием ультразвука определяют экспериментально для каждого обрабатываемого материала.

В том случае, если проницаемость материала низка, в материал вначале нагнетают разупрочняющие растворы, например ПАВ, нагретые до 55-65оС, в совокупности с возбуждением ультразвуковых колебаний и инициируют кавитирующие процессы на пути распространения ультразвуковой волны, что позволяет повысить гидро- и аэродинамические свойства материала за счет того, что ПАВ "съедает" перегородки между порами и трещинами и повышает проницаемость материала. Это позволяет интенсифицировать как процесс сушки, так и пропитки, и снизить энергоемкость способа.

Сущность способа состоит в том, что под воздействием ультразвуковых колебаний флюиды, содержащиеся в капиллярно-пористых материалах, перемещаются на несколько порядков быстрее, чем в отсутствие ультразвуковой волны. Это явление названо авторами упругим миграционным эффектом. Оно имеет место в любых диапазонах частот - Гц - кГц - мГц, т. е. применяемый диапазон частот ограничивает лишь базу применения способа: в диапазоне десятки и сотни герц - база 50-300 м, единицы и десятки кГц - база равна 5-15 м и в диапазоне частот мГц - это база в пределах метра.

Если на пути распространения ультразвуковой волны встречаются участки материала с флюидом, нагретым свыше 30оС, то возможны кавитирующие процессы, резко повышающие проницаемость материала и значительно повышающие производительность процессов сушки и пропитки, причем режим кавитации процесса вероятностный, и вероятность повышается при соблюдении следующих условий:

а) распространение ультразвуковой волны совпадает с направлением пор, трещин и капилляров в материале по их простиранию;

б) частота облучения ультразвука совпадает с собственной частотой флюидов, содержащихся в порах и трещинах материала;

в) на пути распространения ультразвуковой волны имеются градиенты давлений и температур, а также наличие твердых включений с размерами 0,01-0,5 мм, служащих зародышами кавитации.

Преимущества способа состоят в том, что использование ультразвуковых преобразователей позволяет:

1. Снизить вязкость флюидов, содержащихся в капиллярах материала;

2. Повысить скорость перемещения (миграции) флюидов в капиллярах и тем самым в несколько раз увеличить интенсивность процессов сушки и пропитки и снизить их энергоемкость.

3. С использованием упругого миграционного эффекта и кавитации значительно повысить эффективность способа и увеличить его производительность.

Известно устройство для пропитки и сушки капиллярно-пористых материалов, например пиломатериалов или композитов, содержащее ванну, заполненную жидкой рабочей средой, и подвижные электроды с излучателями ультразвуковых колебаний, генератор ультразвуковых колебаний и источник постоянного напряжения.

Известное устройство трудоемко, нетехнологично, не использует вычислительные средства для управления процессом сушки и пропитки и не использует для интенсификации процессов упругий миграционный эффект и кавитацию.

Цель изобретения - интенсификация процессов сушки и пропитки.

Поставленная цель достигается тем, что известное устройство дополнительно содержит широкополосные ультразвуковые излучатели, усилитель с программным управлением, усилитель мощности, соединенные последовательно между собой и подключенные к входу микропроцессорного блока.

Устройство работает следующим образом: на электроды 2 от источника напряжения постоянного тока 4 подают напряжение в совокупности с возбуждением в материале 1 ультразвуковых колебаний в широком диапазоне частот 1-20 кГц и более, снижают вязкость флюидов, содержащихся в порах и трещинах и капиллярах материала 1, причем генератором 5 подают на излучатели 3 импульсы, интенсивность которых зависит от физико-механических свойств материала 1 и которую изменяют в широких пределах посредством усилителя с программным управлением 6 и усилителя мощности 7, управляемых по заранее заданной программе с использованием микропроцессорного блока 8.

Контролируя во время процесса сушки массу и температуру материала, добиваются положительного результата - снижения массы материала на 6-12% , после чего изменяют частотный и амплитудный режим работы ультразвуковых излучателей и нагнетают в материал антисептические растворы, предотвращающие процессы гниения, старения, изменения свойств материала при работе материала в заранее заданных условиях.

Использование данного устройства позволяет расширить функциональные возможности устройства и повысить производительность способа сушки или пропитки, по сравнению с имеющимися устройствами и способами.

П р и м е р. Для процесса сушки изделий из ели применяли магнитострикционные преобразователи МП-60, изготовленные НПО "Вибротехника" (Каунас), с частотами 1-60 кГц и максимальной интенсивностью в импульсе на резонансной частоте 10-20 Вт/см2. К. п. д. преобразователей, выполненных из никеля, достигал 70-80% . В подавляющем большинстве магнитострикционные преобразователи работают при наличии постоянной составляющей магнитного поля - НО (индукции Во), причем соблюдается условие Вм, Во, где Вм - амплитуда переменной составляющей индукции. При таком подмагничивании постоянным током имеет место линеаризация эффекта магнитострикции, и сердечник преобразователя колеблется с частотой возбуждающего поля, а ЭДС в обмотке приемника имеет ту же частоту, что и внешнее воздействующее на сердечник звуковое давление. Постоянное подмагничивание создается либо постоянным током, протекающим по обмотке, либо с помощью постоянных магнитов, вставленных в магнитопровод сердечника, либо за счет остаточной намагниченности. Величина Но(Во) выбирается в зависимости от конкретных условий применения магнитострикционного преобразователя. Для того, чтобы получить максимальный эффект преобразования, используют оптимальное значение Но(Нопт.) соответствующее максимальному коэффициенту магнитомеханической связи. В используемых преобразователях применяют значения Но, в два раза превышающие Нопт, что позволяет получить значительную энергию ультразвукового импульса - до 20 Вт/см2.

Результаты процесса сушки приведены в таблице.

На фиг. 2 приведен график сушки изделий из дерева (ель) в зависимости от частоты воздействия, интенсивности упругой волны и времени воздействия (диапазон возбуждающих частот 1-60 кГц, шаг - 1 кГц, уровень напряжений в знакопеременной упругой волне 0,1-0,2 от величины разрушающих напряжений на разрыв).

Потеря массы контролируется методом взвешивания партии изделий, предназначенных для сушки Dо, и после сушки (во время вибровоздействия). Между отдельными слоями изделия размещают вещества, поглощающие влагу при ее выделении из пор и трещин изделий при вибровоздействиях. Сканирование частоты с шагом 1,0 кГц сначала в одну сторону 1-60 кГц, а затем в другую нижнюю 60 мм - 1,0 кГц позволяет взаимодействовать упругим волнам со всеми встречающимися на их пути неоднородностями с размерами от 3 мм и более, и флюид - жидкости и газово-воздушные включения мигрируют (перемещаются в направлении распространения упругой волны) на несколько порядков быстрее, чем в отсутствие упругой волны, что и обеспечивает высокий КПД качества и производительности.

(56) Vаkuum-Ноlztrockenaulage, ISVЕ, 1991, 25020, Flero (Dreseic), Italu, Viа Doi Маеstriou, 52, tol (030) 264326.

Авторское свидетельство СССР N 552483, кл. F 26 В 3/34, 1972,

Авторское свидетельство СССР N 614300, кл. F 26 В 9/06, 5/02, 1976. 


ФОРМУЛА ИЗОБРЕТЕНИЯ



1. Способ пропитки и сушки капиллярно-пористых материалов, включающий воздействие на материал электрического и акустического полей, причем электрическое поле создают постоянным током, отличающийся тем, что, с целью повышения эффективности, снижения энергоемкости и повышения качества капиллярно-пористых материалов, используют ультразвуковые колебания, амплитуду которых медленно поднимают от минимально возможного уровня до уровня, при котором напряжения в знакопеременной упругой волне достигнут величины 0,2 - 0,3 разрушающих напряжений в материале на разрыв в течение времени, при котором масса материала снизится на 6 - 12% от первоначального, а вибровоздействия осуществляют в несколько этапов, причем сначала вибровоздействия осуществляют в диапазоне частот 1 - 20 кГц в течение времени, при котором деформации сжатия материала сменят деформации растяжения, а затем переходят на частоту, равную частоте собственных колебаний материала.

2. Способ по п. 1, отличающийся тем, что ультразвуковые излучатели размещают на торцах материала и вибровоздействия производят попеременно с одного, а затем другого торца, причем время T вибровоздействия с каждого торца определяют из выражения T = Л/Ф, где Л - длина материала, м; Ф - скорость миграции - скорость перемещения (миграции) флюидов в капиллярах материала под воздействием упругой волны, м/с.

3. Способ по п. 1, отличающийся тем, что после потери массы в размере 6 - 12% от первоначального нагнетают в материал антисептические растворы и нагнетание производят в течение времени, при котором масса изделия не достигает первоначальной величины.

4. Способ по п. 1, отличающийся тем, что для повышения гидро- и аэродинамических связей капиллярно-пористых материалов, например пиломатериалов, нагнетают в них растворы поверхностно-активных веществ в совокупности с возбуждением в материале ультразвуковых колебаний, причем амплитуду в знакопеременной упругой волне поддерживают на уровне 0,3 - 0,5 величины разрушающих напряжений для материала.

5. Способ по п. 1, отличающийся тем, что для низкопористых материалов с целью увеличения их проницаемости нагнетают в них нагретые разупрочняющие растворы, например ПАВ, нагретые до 55 - 65oС, возбуждают ультразвуковые колебания и инициируют в парах, трещинах и капиллярах материала кавитирующие процессы, причем энергию E кавитирующего пузырька, возникающего в зоне разряжения и схлопывающегося в зоне сжатия ультразвуковой волны, определяют из выражения

E= P0R34 / 3,

где R - размер кавитирующего пузырька, мм;

P0 - давление в порах, трещинах и капиллярах материала в отсутствие ультразвуковой волны, м/с.

6. Способ по п. 1, отличающийся тем, что, с целью интенсификации процессов пропитки и сушки, в материале возбуждают ультразвуковые колебания, частоту которых согласуют с собственными частотами флюидов - жидкостей и газово-воздушных включений, содержащих в порах, трещинах и капиллярах материала, и вибровоздействия ультразвуком осуществляют в течение времени, при котором достигают положительного эффекта.

7. Устройство для пропитки и сушки капиллярно-пористых материалов, например пиломатериалов или композитов, содержащее ванну, заполненную жидкой рабочей средой, и подвижные электроды с излучателями ультразвуковых колебаний, генератор ультразвуковых колебаний и источник постоянного напряжения, отличающееся тем, что, с целью интенсификации процессов сушки и пропитки, устройство дополнительно содержит широкополосные ультразвуковые излучатели, усилитель с программным управлением, усилитель мощности, соединенные последовательно между собой по входу микропроцессорного блока.




ПРОЧИТАТЬ НУЖНО ВСЕМ !
Судьба пионерских изобретений и научных разработок, которым нет и не будет аналогов на планете еще лет сорок, разве что у инопланетян



Независимый научно технический портал

Подборка патентов изобретений и технологий относящихся к СТРОЙИНДУСТРИИ: строительные составы, смеси и композиции для производства строительных материалов и ведения строительных работ, бетон, специальный бетон, добавки для бетона, влияющие на его физические и химические свойства, специальные строительные составы, смеси и композиции обладающие гидроизолирующими, теплозащитными, звукоизоляционными, антикоррозийными, герметизирующими, радиационно-защитными свойствами и способы их получения, лакокрасочные, клеевые составы и композиции, строительные изделия, окна и двери. шторы и жалюзи. фурнитура, гарнитура и комплектующие, устройство кровли, крыш зданий и сооружений кровельные материалы и изделия. приспособления и устройства, устройство покрытий полов. наливные полы. смеси и композиции, строительство и ремонт гидротехнических сооружений, технологии строительства и ремонтно-строительные работы при возведении объектов промышленного и гражданского назначения, новые технологии и способы ведения ремонтно-строительных работ, строительная техника и оборудование для производства строительных материалов и ведения строительных работ.



Новые технологии и изобретения в стройиндустрии




СОВЕРШЕННО БЕСПЛАТНО!
Вам нужна ПОЛНАЯ ВЕРСИЯ данного патента? Сообщите об этом администрации портала. В сообщении обязательно укажите ссылку на данную страницу.


ПОИСК ИНФОРМАЦИИ В БАЗЕ ДАННЫХ


Режим поиска:"и" "или"

Инструкция. Ключевые слова в поле ввода разделяются пробелом или запятой. Регистр не имеет значения.

Режим поиска "и" означает, что будут найдены только те страницы, где встречается каждое из ключевых слов. Например, при запросе "силикатный кирпич" будет найдено словосочетание "силикатный кирпич". При использовании режима "или" результатом поиска будут все страницы, где встречается хотя бы одно ключевое слово ("силикатный" или "кирпич").

В любом режиме знак "+" перед ключевым словом означает, что данное ключевое слово должно присутствовать в найденных файлах. Если вы хотите исключить какое-либо слово из поиска, поставьте перед ним знак "-". Например: "+силикатный -кирпич".

Поиск выдает все данные, где встречается введенное Вами слово. Например, при запросе "кирпич" будут найдены слова "кирпич", "кирпичи" и другие. Восклицательный знак после ключевого слова означает, что будут найдены только слова точно соответствующие запросу "кирпич!".


Строительные составы, смеси и композиции для производства строительных материалов и ведения строительных работ | Специальные строительные составы, смеси и композиции обладающие гидроизолирующими, теплозащитными, звукоизоляционными, антикоррозийными, герметизирующими, радиационно-защитными свойствами и способы их получения | Лакокрасочные, клеевые составы и композиции | Строительные изделия | Новые технологии и способы ведения ремонтно-строительных работ | Окна и двери. Шторы и жалюзи. Фурнитура, гарнитура и комплектующие | Устройство кровли, крыш зданий и сооружений кровельные материалы и изделия. Приспособления и устройства | Бетон. Добавки для бетона, влияющие на его физические и химические свойства | Устройство покрытий полов. Наливные полы. Смеси и композиции | Строительство и ремонт гидротехнических сооружений | Технологии строительства и ремонтно-строительные работы при возведении объектов промышленного и гражданского назначения | Строительная техника и оборудование для производства строительных материалов и ведения строительных работ | Способы производства строительных материалов из древесины и отходов деревообработки


Рейтинг@Mail.ru