Загрузка. Пожалуйста, подождите...

Независимый научно-технический портал

RSS Моб. версия Реклама
Главная О портале Регистрация
Независимый Научно-Технический Портал NTPO.COM приветствует Вас - Гость!
  • Организации
  • Форум
  • Разместить статью
  • Возможен вход через:
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Способ получения сверхчистой питьевой воды и установка для осуществления эт ...
Изобретения Российской Федерации » Устройства и способы водоочистки » Обработка воды
Способ получения сверхчистой питьевой воды и установка для осуществления эт ... Изобретение может быть использовано при обработке воды окислением с помощью озонирования. Перед синтезом озона воздух предварительно охлаждают и сушат, а после - распыляют и пропускают через слой воды, нерастворившийся озон разлагают за счет нагрева и последующего прохождения через катализатор, фильтрацию проводят в три этапа, после чего воду деминерализуют. В установку для получения сверхчистой воды входит система подготовки воздуха к синтезу озона, состоящая из компрессора, блока осушки,...
читать полностью


» Изобретения Российской Федерации » Устройства и способы водоочистки » Обработка воды
Добавить в избранное
Мне нравится 0


Сегодня читали статью (2)
Пользователи :(0)
Пусто

Гости :(2)
0
Добавить эту страницу в свои закладки на сайте »

Способ обезвреживания морской балластной воды


Отзыв на форуме  Оставить комментарий

ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2500624

Область деятельности(техники), к которой относится описываемое изобретение

Изобретение относится к области обезвреживания балластных вод (БВ) судов путем использования совместного воздействия бактерицидного ультрафиолетового (УФ-С) излучения и озона на одноклеточные организмы в целях защиты местных биоценозов от инвазивных организмов. Важной и трудной задачей является то, что, в соответствии со стандартом G-8 Международной Морской Организацией (International Marine Organisation, IMO), БВ, прошедшая через фильтры с размером пор 50 мкм, должна быть обезврежена не только от бактерий, спор и вирусов, но и от фито- и зоопланктона.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

В балластных танках судов перевозится между удаленными друг от друга районами мирового океана приблизительно 10-12 миллиардов тонн водяного балласта в год и, по крайней мере, 7000 различных видов морских организмов (данные 2009 года). Большинство из них не выживает в путешествии внутри балластного танка, остальным предстоит конкуренция с местными видами. Однако, если условия принимающей среды благоприятны для выживания и создания репродуктивного потомства вида морских организмов, он может стать агрессивным и размножаться, уничтожая местные виды. Воздействие чужеродных привнесенных видов морских организмов, в отличие от других форм загрязнения морской воды, часто необратимо, поскольку происходит изменение морских экосистем.

Внесение чужеродных организмов в прибрежные воды во всем мире происходит именно при выгрузке БВ в море. Состав морских организмов в БВ, прошедшей фильтры с размером пор  50 мкм: вирусы, споры, бактерии, одноклеточные зоопланктон и фитопланктон. Повышение эффективности обезвреживания указанных микроорганизмов в морской БВ, остающихся после ее фильтрации, является целью настоящего изобретения.

Известен способ обеззараживания воды озонированием и ультрафиолетовым (УФ-С) излучением. Озонирование воды проводится эжекцией, после чего вода подается в блок облучения УФ-С излучением. Недостатком этого патента, применительно к обезвреживанию БВ, является отсутствие учета взаимодействия растворенного озона с солями брома в морской воде. Этот процесс является очень быстрым и его учет необходим для получения эффекта синергизма взаимодействия УФ-С излучения и озона (CN 201342108, A61L 101/10; A61L 2/10; A61L 2/20, опубл. 2009-11-11).

Известно устройство для обеззараживания воды озонированием и УФ-С излучением, в котором для озонирования используется озон, образуемый в высокочастотном разряде в промежутке между УФ-С лампой и защитной колбой (заявка РФ 93057611, C02F 1/32, G05D 27/00, опубл. 1997-01-27). Недостатком этого устройства является тот факт, что озон имеет сильное поглощение бактерицидного УФ-С излучения. Поэтому, при применении к БВ, наличие слоя озона на пути УФ-С излучения к воде приведет к уменьшению бактерицидного облучения, тем большему, чем выше производительность по озону. Соответственно, положительный эффект совместного действия не будет реализован.

Известен способ обезвреживания балластных вод тепловой обработкой и применения для «добавочного» обезвреживания УФ-С и озоновые лампы (DE 102006037845, B63J 4/00, опубл. 2008-03-20). Дополнительный характер блока (УФ-С)+озон указывает на его относительно низкую эффективность при самостоятельном использовании.

rnrnrnrnrnrnrnrnrn

Известен способ обезвреживания балластных вод, в котором озон вводится в воду в концентрации 5-8 мг/л, затем проводится биологическая обработка воды и после этого облучение УФ-С дозой*) (*)Доза, мДж/см2 , определяется энергией бактерицидного УФ-С излучения, проходящей через выделенную площадь 1 см2 за время пребывания этой площади в блоке УФ-С облучения, усредненной по всем траекториям движения элементарных объемов обрабатываемой воды) 40-60 мДж/см 2 (CN 101602562, C02F 1/32; C02F 1/78; C02F 3/12; C02F 9/14, опубл. 2009-12-16). Недостатками этого способа, применительно к БВ, является, во-первых, высокая концентрация растворенного в воде озона. В результате образуется большая концентрация вторичных долгоживущих токсичных продуктов, для удаления которых необходимы специальные меры. Во-вторых, предлагаемая доза УФ-С облучения, даже при такой высокой концентрации озона, недостаточна для обезвреживания инвазивных одноклеточных организмов, таких, как фито- и зоопланктон, переносимых БВ.

Наиболее близким к заявляемому способу является способ, предложенный в патенте WO 2010149638, C02F 1/32; C02F 1/78, опубл. 2010-12-29. В нем описан способ обезвреживания морской БВ, в котором озон вводится в поток БВ таким образом, что обеспечивается время «удерживания озона» в смеси с морской водой в течение времени 2-500 секунд перед вводом смеси морской воды с озоном в блок облучения ее ультрафиолетовым излучением. Недостатком способа является то, что авторы не учитывают быстрых реакций озона с содержащимися в морской воде солями брома, в результате которых, с учетом времени приготовления смеси озона с морской водой, концентрация озона в морской воде значительно уменьшится перед вводом смеси в блок ультрафиолетового облучения, даже при времени удержания озона в смеси 2 секунды, тем более при времени удержания 500 секунд. Кроме того, ни в описании, ни в формуле изобретения нет объяснения, каким методом авторы предполагают удерживать озон в смеси с морской водой в условиях указанного выше механизма его быстрого разложения.

В основу данного изобретения положена задача создания эффективного способа обезвреживания морской балластной воды, обеспечивающего эффективную защиту прибрежных вод мирового океана от инвазивных организмов, переносимых БВ судов, а именно, бактерий, спор, вирусов, одноклеточных фито- и зоопланктона. включая, путем озонирования и облучения ультрафиолетовым (УФ-С) излучением.

Технический результат изобретения достигается способом, при котором морская БВ обезвреживается путем введения озона, содержащегося или в озоновоздушной смеси, или в газовой смеси обогащенной кислородом, или в смеси с жидкой пресной водой, и облучения УФ-С излучением. При этом озон вводится в поток БВ непосредственно перед подачей БВ в блок УФ-С облучения и время обезвреживания морской БВ от введения озона до выхода озонированной морской БВ из блока УФ-С облучения, не превышает 10 секунд, при этом концентрация озона на входе в блок УФ-С облучения не более 2 мг озона на 1 литр БВ, а доза УФ-С облучения лежит в диапазоне 100-200 мДж/см 2.

Организованный таким образом процесс обезвреживания БВ и сочетание концентрации озона и величины дозы УФ-С облучения, по результатам экспериментальной проверки, обеспечивает технический результат изобретения. При этом озоносодержащую смесь подают в блок УФ-С облучения через форсунки так, что величина угла между направлением движения потока БВ и направлением подачи озоносодержащей смеси лежит в диапазоне от 30° до 150°. Газовую озоносодержащую смесь могут также подавать через барбатажную пластину, расположенную по ходу потока морской БВ в торце блока УФ-С облучения. Такими техническими решениями ввода озона в морскую БВ достигается наиболее быстрое перемешивание морской БВ с озоном.

Предлагаемый способ достижения технического результата изобретения обеспечивает повышение эффективности обезвреживания морской БВ и основан на следующих свойствах раствора озона в морской воде.

Рассмотрим процесс озонирования морской воды. Особенностью этого процесса, в сравнении с озонированием пресной воды, является наличие в озонированной морской воде быстрых реакций озона с содержащимися в морской воде соединениями брома. Скорость протекания этих реакций такова, что характеристическое время жизни озона в морской воде (уменьшение концентрации озона в «е» раз) составляет примерно 5 секунд. В ходе этих реакций озон тратится на образование таких соединений, как BrO, HOBr и других (они называются, общий остаточный окислитель - total residual oxidant, TRO), которые обеззараживают морскую воду, но являются менее эффективными дезинфектантами, чем сам озон. Кроме того, в результате соединения TRO с растворенной в морской воде органикой, образуются устойчивые бромсодержащие органические соединения, нежелательные с точки зрения накопления их в окружающей среде.

Совместное воздействие озона и УФ-С излучения имеет эффект синергизма, то есть взаимного усиления эффекта дезинфекции. При совместном воздействии TRO и УФ-С облучения на БВ эффекта синергизма не наблюдается.

Синергизм совместного действия УФ-С облучения и озона обусловлен следующими химическими процессами.

Во-первых, озон поглощает УФ-С излучение и при этом диссоциирует на атом кислорода и, так называемый, синглетный кислород. Атом кислорода, в реакции с водой, образует радикалы ОН, которые являются более сильными окислителями и, соответственно, более эффективными дезинфектантами, чем сам озон.

rnrnrnrnrnrnrnrnrn

Во-вторых, образующийся при фотодиссоциации озона метастабильный синглетный кислород, с энергией возбуждения 1 электрон-вольт, при попадании в живую клетку нарушает ее функционирование.

Остаточным окислителем при совместном действии озона и УФ-С облучения является незначительное количество образующейся перекиси водорода, являющейся вторичным дезинфектантом, не наносящим вреда окружающей среде.

В целом, способ состоит в быстром перемешивании озона с морской БВ непосредственно на входе ее в блок УФ-С облучения. Введение озона в поток морской БВ производится непосредственно перед входом воды в блок УФ-С облучения, так чтобы время от начала введения озона в БВ до выхода морской БВ из блока УФ-С обеззараживания не превысило 10 сек - времени исчезновения озона в реакциях с растворенными в морской воде бромидами, а озон вводят в количестве, обеспечивающем концентрацию озона не более 2 мг озона на 1 литр обрабатываемой морской воды, при этом величина дозы УФ-С облучения лежит в диапазоне 100-200 мДж/см2, что приводит, в итоге, к достижению технического результата изобретения - повышению эффективности защиты прибрежных вод мирового океана от инвазивных организмов, переносимых БВ судов.

Схема одной реализации способа обезвреживания морской балластной водыСхема одной реализации способа обезвреживания морской балластной воды

Схема одной реализации способа обезвреживания морской балластной воды приведена на фиг.1. Озон, наработанный генератором озона озонатором 1, подается в смеситель 2 с пресной водой. В смесителе производится предварительное перемешивание озона с пресной водой, подаваемой из бака запаса пресной воды 5. Время жизни озона в пресной воде составляет десятки минут и не препятствует реализации предлагаемого способа. Озонированная пресная вода подается под давлением насосом 6 и форсункой 4 (или несколькими форсунками), вводится в блок УФ-С обеззараживания 3. Важно, что форсунка (форсунки), через которую (которые) подается озоносодержащая среда, расположена непосредственно перед входом БВ в блок УФ-С облучения 3. Обезвреженную морскую БВ получают на выходе блока УФ-С обеззараживания не более чем через 10 сек от начала ее озонирования.

Схема другой реализации способа обезвреживания морской балластной водыСхема другой реализации способа обезвреживания морской балластной воды

Схема другой реализации способа обезвреживания морской балластной воды представлена на фиг.2. Озоновоздушная, или обогащенная кислородом озоносодержащая газовая смесь нарабатывается генератором озона озонатором 1 и подается компрессором 7 под давлением в блок УФ-С облучения 3 перед входом потока морской БВ. Компрессор 7 повышает давление газовой смеси, подаваемой в узел озонирования БВ, до величины, большей давления в потоке БВ в блоке УФ облучения 3. В качестве узла озонирования БВ могут применять форсунку (форсунки) по схеме фиг.1, либо барбатажную пластину 8 (фиг.2), расположенную в торце блока УФ-С облучения 3, перпендикулярно направлению движения потока БВ. Обезвреженную морскую БВ получают на выходе блока УФ-С обеззараживания не более чем через 10 сек от начала ее озонирования.В балластных танках судов перевозится между удаленными друг от друга районами мирового океана приблизительно 10-12 миллиардов тонн водяного балласта в год и, по крайней мере, 7000 различных видов морских организмов (данные 2009 года). Большинство из них не выживает в путешествии внутри балластного танка, остальным предстоит конкуренция с местными видами. Однако, если условия принимающей среды благоприятны для выживания и создания репродуктивного потомства вида морских организмов, он может стать агрессивным и размножаться, уничтожая местные виды. Воздействие чужеродных привнесенных видов морских организмов, в отличие от других форм загрязнения морской воды, часто необратимо, поскольку происходит изменение морских экосистем.

Внесение чужеродных организмов в прибрежные воды во всем мире происходит именно при выгрузке БВ в море. Состав морских организмов в БВ, прошедшей фильтры с размером пор  50 мкм: вирусы, споры, бактерии, одноклеточные зоопланктон и фитопланктон. Повышение эффективности обезвреживания указанных микроорганизмов в морской БВ, остающихся после ее фильтрации, является целью настоящего изобретения.

Известен способ обеззараживания воды озонированием и ультрафиолетовым (УФ-С) излучением. Озонирование воды проводится эжекцией, после чего вода подается в блок облучения УФ-С излучением. Недостатком этого патента, применительно к обезвреживанию БВ, является отсутствие учета взаимодействия растворенного озона с солями брома в морской воде. Этот процесс является очень быстрым и его учет необходим для получения эффекта синергизма взаимодействия УФ-С излучения и озона (CN 201342108, A61L 101/10; A61L 2/10; A61L 2/20, опубл. 2009-11-11).

Известно устройство для обеззараживания воды озонированием и УФ-С излучением, в котором для озонирования используется озон, образуемый в высокочастотном разряде в промежутке между УФ-С лампой и защитной колбой (заявка РФ 93057611, C02F 1/32, G05D 27/00, опубл. 1997-01-27). Недостатком этого устройства является тот факт, что озон имеет сильное поглощение бактерицидного УФ-С излучения. Поэтому, при применении к БВ, наличие слоя озона на пути УФ-С излучения к воде приведет к уменьшению бактерицидного облучения, тем большему, чем выше производительность по озону. Соответственно, положительный эффект совместного действия не будет реализован.

Известен способ обезвреживания балластных вод тепловой обработкой и применения для «добавочного» обезвреживания УФ-С и озоновые лампы (DE 102006037845, B63J 4/00, опубл. 2008-03-20). Дополнительный характер блока (УФ-С)+озон указывает на его относительно низкую эффективность при самостоятельном использовании.

Известен способ обезвреживания балластных вод, в котором озон вводится в воду в концентрации 5-8 мг/л, затем проводится биологическая обработка воды и после этого облучение УФ-С дозой*) (*)Доза, мДж/см2 , определяется энергией бактерицидного УФ-С излучения, проходящей через выделенную площадь 1 см2 за время пребывания этой площади в блоке УФ-С облучения, усредненной по всем траекториям движения элементарных объемов обрабатываемой воды) 40-60 мДж/см 2 (CN 101602562, C02F 1/32; C02F 1/78; C02F 3/12; C02F 9/14, опубл. 2009-12-16). Недостатками этого способа, применительно к БВ, является, во-первых, высокая концентрация растворенного в воде озона. В результате образуется большая концентрация вторичных долгоживущих токсичных продуктов, для удаления которых необходимы специальные меры. Во-вторых, предлагаемая доза УФ-С облучения, даже при такой высокой концентрации озона, недостаточна для обезвреживания инвазивных одноклеточных организмов, таких, как фито- и зоопланктон, переносимых БВ.

Наиболее близким к заявляемому способу является способ, предложенный в патенте WO 2010149638, C02F 1/32; C02F 1/78, опубл. 2010-12-29. В нем описан способ обезвреживания морской БВ, в котором озон вводится в поток БВ таким образом, что обеспечивается время «удерживания озона» в смеси с морской водой в течение времени 2-500 секунд перед вводом смеси морской воды с озоном в блок облучения ее ультрафиолетовым излучением. Недостатком способа является то, что авторы не учитывают быстрых реакций озона с содержащимися в морской воде солями брома, в результате которых, с учетом времени приготовления смеси озона с морской водой, концентрация озона в морской воде значительно уменьшится перед вводом смеси в блок ультрафиолетового облучения, даже при времени удержания озона в смеси 2 секунды, тем более при времени удержания 500 секунд. Кроме того, ни в описании, ни в формуле изобретения нет объяснения, каким методом авторы предполагают удерживать озон в смеси с морской водой в условиях указанного выше механизма его быстрого разложения.

В основу данного изобретения положена задача создания эффективного способа обезвреживания морской балластной воды, обеспечивающего эффективную защиту прибрежных вод мирового океана от инвазивных организмов, переносимых БВ судов, а именно, бактерий, спор, вирусов, одноклеточных фито- и зоопланктона. включая, путем озонирования и облучения ультрафиолетовым (УФ-С) излучением.

Технический результат изобретения достигается способом, при котором морская БВ обезвреживается путем введения озона, содержащегося или в озоновоздушной смеси, или в газовой смеси обогащенной кислородом, или в смеси с жидкой пресной водой, и облучения УФ-С излучением. При этом озон вводится в поток БВ непосредственно перед подачей БВ в блок УФ-С облучения и время обезвреживания морской БВ от введения озона до выхода озонированной морской БВ из блока УФ-С облучения, не превышает 10 секунд, при этом концентрация озона на входе в блок УФ-С облучения не более 2 мг озона на 1 литр БВ, а доза УФ-С облучения лежит в диапазоне 100-200 мДж/см 2.

rnrnrnrnrnrnrnrnrn

Организованный таким образом процесс обезвреживания БВ и сочетание концентрации озона и величины дозы УФ-С облучения, по результатам экспериментальной проверки, обеспечивает технический результат изобретения. При этом озоносодержащую смесь подают в блок УФ-С облучения через форсунки так, что величина угла между направлением движения потока БВ и направлением подачи озоносодержащей смеси лежит в диапазоне от 30° до 150°. Газовую озоносодержащую смесь могут также подавать через барбатажную пластину, расположенную по ходу потока морской БВ в торце блока УФ-С облучения. Такими техническими решениями ввода озона в морскую БВ достигается наиболее быстрое перемешивание морской БВ с озоном.

Предлагаемый способ достижения технического результата изобретения обеспечивает повышение эффективности обезвреживания морской БВ и основан на следующих свойствах раствора озона в морской воде.

Рассмотрим процесс озонирования морской воды. Особенностью этого процесса, в сравнении с озонированием пресной воды, является наличие в озонированной морской воде быстрых реакций озона с содержащимися в морской воде соединениями брома. Скорость протекания этих реакций такова, что характеристическое время жизни озона в морской воде (уменьшение концентрации озона в «е» раз) составляет примерно 5 секунд. В ходе этих реакций озон тратится на образование таких соединений, как BrO, HOBr и других (они называются, общий остаточный окислитель - total residual oxidant, TRO), которые обеззараживают морскую воду, но являются менее эффективными дезинфектантами, чем сам озон. Кроме того, в результате соединения TRO с растворенной в морской воде органикой, образуются устойчивые бромсодержащие органические соединения, нежелательные с точки зрения накопления их в окружающей среде.

Совместное воздействие озона и УФ-С излучения имеет эффект синергизма, то есть взаимного усиления эффекта дезинфекции. При совместном воздействии TRO и УФ-С облучения на БВ эффекта синергизма не наблюдается.

Синергизм совместного действия УФ-С облучения и озона обусловлен следующими химическими процессами.

Во-первых, озон поглощает УФ-С излучение и при этом диссоциирует на атом кислорода и, так называемый, синглетный кислород. Атом кислорода, в реакции с водой, образует радикалы ОН, которые являются более сильными окислителями и, соответственно, более эффективными дезинфектантами, чем сам озон.

Во-вторых, образующийся при фотодиссоциации озона метастабильный синглетный кислород, с энергией возбуждения 1 электрон-вольт, при попадании в живую клетку нарушает ее функционирование.

Остаточным окислителем при совместном действии озона и УФ-С облучения является незначительное количество образующейся перекиси водорода, являющейся вторичным дезинфектантом, не наносящим вреда окружающей среде.

В целом, способ состоит в быстром перемешивании озона с морской БВ непосредственно на входе ее в блок УФ-С облучения. Введение озона в поток морской БВ производится непосредственно перед входом воды в блок УФ-С облучения, так чтобы время от начала введения озона в БВ до выхода морской БВ из блока УФ-С обеззараживания не превысило 10 сек - времени исчезновения озона в реакциях с растворенными в морской воде бромидами, а озон вводят в количестве, обеспечивающем концентрацию озона не более 2 мг озона на 1 литр обрабатываемой морской воды, при этом величина дозы УФ-С облучения лежит в диапазоне 100-200 мДж/см2, что приводит, в итоге, к достижению технического результата изобретения - повышению эффективности защиты прибрежных вод мирового океана от инвазивных организмов, переносимых БВ судов.

Схема одной реализации способа обезвреживания морской балластной водыСхема одной реализации способа обезвреживания морской балластной воды

Схема одной реализации способа обезвреживания морской балластной воды приведена на фиг.1. Озон, наработанный генератором озона озонатором 1, подается в смеситель 2 с пресной водой. В смесителе производится предварительное перемешивание озона с пресной водой, подаваемой из бака запаса пресной воды 5. Время жизни озона в пресной воде составляет десятки минут и не препятствует реализации предлагаемого способа. Озонированная пресная вода подается под давлением насосом 6 и форсункой 4 (или несколькими форсунками), вводится в блок УФ-С обеззараживания 3. Важно, что форсунка (форсунки), через которую (которые) подается озоносодержащая среда, расположена непосредственно перед входом БВ в блок УФ-С облучения 3. Обезвреженную морскую БВ получают на выходе блока УФ-С обеззараживания не более чем через 10 сек от начала ее озонирования.

Схема другой реализации способа обезвреживания морской балластной водыСхема другой реализации способа обезвреживания морской балластной воды

Схема другой реализации способа обезвреживания морской балластной воды представлена на фиг.2. Озоновоздушная, или обогащенная кислородом озоносодержащая газовая смесь нарабатывается генератором озона озонатором 1 и подается компрессором 7 под давлением в блок УФ-С облучения 3 перед входом потока морской БВ. Компрессор 7 повышает давление газовой смеси, подаваемой в узел озонирования БВ, до величины, большей давления в потоке БВ в блоке УФ облучения 3. В качестве узла озонирования БВ могут применять форсунку (форсунки) по схеме фиг.1, либо барбатажную пластину 8 (фиг.2), расположенную в торце блока УФ-С облучения 3, перпендикулярно направлению движения потока БВ. Обезвреженную морскую БВ получают на выходе блока УФ-С обеззараживания не более чем через 10 сек от начала ее озонирования.

Необходимое время пребывания озонированной БВ в УФ-С блоке 3, при средней дозе УФ-С облучения 100-200 мДж/см2, даже для таких трудноуничтожимых объектов инвазивного вноса, как сине-зеленые водоросли, не более 10 секунд. Время жизни озона в блоке УФ-С, с приведенными выше характеристиками бактерицидного излучения, не более 5 секунд. Поэтому основная часть растворенного в БВ озона дает вклад в синергический эффект обезвреживания БВ совместным действием озонирования и УФ-С излучения.

В таблице 1 представлены экспериментальные данные, полученные при применении предлагаемого способа для инактивации водоросли Dunaliella saline, обладающей повышенной устойчивостью к неблагоприятным условиям среды обитания, в том числе, воздействию УФ-С облучения.

Эффективность воздействия УФ-С облучением и озоном, отдельно и совместно, на клетки зеленой водоросли Dunaliella saline в процентахЭффективность воздействия УФ-С облучением и озоном, отдельно и совместно, на клетки зеленой водоросли Dunaliella saline в процентах

Формула изобретения

1. Способ обезвреживания морской балластной воды путем введения в воду озона и облучения ее УФ-С излучением, отличающийся тем, что озон вводят из озоносодержащей газовой смеси или из смеси озона с пресной водой в обезвреживаемую морскую балластную воду непосредственно перед подачей морской балластной воды в блок УФ-С облучения, а озоносодержащую газовую смесь подают через барботажную пластину, расположенную перпендикулярно направлению движения потока обезвреживаемой морской балластной воды, при этом время от введения озона в поток морской балластной воды до выхода морской балластной воды из блока УФ-С облучения не превышает 10 с, а озон вводят в количестве, обеспечивающем концентрацию не более 2 мг озона на 1 л обрабатываемой морской воды, при этом доза УФ-С облучения озонированной морской балластной воды в блоке УФ-С облучения лежит в диапазоне 100-200 мДж/см2.

2. Способ по п.1, отличающийся тем, что озоносодержащую газовую смесь или смесь озона с пресной водой подают в поток обезвреживаемой морской балластной воды под углом к направлению его движения через форсунки, расположенные в потоке морской балластной воды на входе в блок УФ-С облучения.

3. Способ по п.1, отличающийся тем, что величина угла между направлением движения потока обезвреживаемой балластной воды и направлением подачи озоносодержащей газовой смеси или смеси озона с пресной водой из помещенных в этот поток форсунок лежит в диапазоне от 30° до 150°.

>

Необходимое время пребывания озонированной БВ в УФ-С блоке 3, при средней дозе УФ-С облучения 100-200 мДж/см2, даже для таких трудноуничтожимых объектов инвазивного вноса, как сине-зеленые водоросли, не более 10 секунд. Время жизни озона в блоке УФ-С, с приведенными выше характеристиками бактерицидного излучения, не более 5 секунд. Поэтому основная часть растворенного в БВ озона дает вклад в синергический эффект обезвреживания БВ совместным действием озонирования и УФ-С излучения.

В таблице 1 представлены экспериментальные данные, полученные при применении предлагаемого способа для инактивации водоросли Dunaliella saline, обладающей повышенной устойчивостью к неблагоприятным условиям среды обитания, в том числе, воздействию УФ-С облучения.

Эффективность воздействия УФ-С облучением и озоном, отдельно и совместно, на клетки зеленой водоросли Dunaliella saline в процентахЭффективность воздействия УФ-С облучением и озоном, отдельно и совместно, на клетки зеленой водоросли Dunaliella saline в процентах

Формула изобретения

1. Способ обезвреживания морской балластной воды путем введения в воду озона и облучения ее УФ-С излучением, отличающийся тем, что озон вводят из озоносодержащей газовой смеси или из смеси озона с пресной водой в обезвреживаемую морскую балластную воду непосредственно перед подачей морской балластной воды в блок УФ-С облучения, а озоносодержащую газовую смесь подают через барботажную пластину, расположенную перпендикулярно направлению движения потока обезвреживаемой морской балластной воды, при этом время от введения озона в поток морской балластной воды до выхода морской балластной воды из блока УФ-С облучения не превышает 10 с, а озон вводят в количестве, обеспечивающем концентрацию не более 2 мг озона на 1 л обрабатываемой морской воды, при этом доза УФ-С облучения озонированной морской балластной воды в блоке УФ-С облучения лежит в диапазоне 100-200 мДж/см2.

2. Способ по п.1, отличающийся тем, что озоносодержащую газовую смесь или смесь озона с пресной водой подают в поток обезвреживаемой морской балластной воды под углом к направлению его движения через форсунки, расположенные в потоке морской балластной воды на входе в блок УФ-С облучения.

3. Способ по п.1, отличающийся тем, что величина угла между направлением движения потока обезвреживаемой балластной воды и направлением подачи озоносодержащей газовой смеси или смеси озона с пресной водой из помещенных в этот поток форсунок лежит в диапазоне от 30° до 150°.

Имя изобретателя: Фоканов Валерий Петрович (RU), Зябрикова Людмила Васильевна (RU), Погодин Никита Петрович (RU), Хорошев Виталий Геннадиевич (RU), Шалларь Александр Владимирович (RU)
Имя патентообладателя: ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "НАУЧНО-ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ ЭКОЛОГИЯ, НАУКА, ТЕХНИКА" (ООО "НПО ЭНТ")
Почтовый адрес для переписки: 199106, Санкт-Петербург, В.О., 24 линия, 3-7, п/я 43, НПО ЭНТ
Дата начала отсчета действия патента: 01.06.2011

Разместил статью: admin
Дата публикации:  10-12-2013, 12:16

html-cсылка на публикацию
⇩ Разместил статью ⇩

avatar

Фомин Дмитрий Владимирович

 Его публикации 


Нужна регистрация

Отправить сообщение
BB-cсылка на публикацию
Прямая ссылка на публикацию
Огромное Спасибо за Ваш вклад в развитие отечественной науки и техники!

Устройство для охлаждения воды
Изобретение относится к устройствам для прямого испарительного охлаждения воды и может быть использовано в системах оборотного водоснабжения энергопотребляющего оборудования. Устройство для охлаждения воды содержит корпус, блок насадки, коллекторы с разбрызгивающими устройствами, каплеуловитель, бак с водяным насосом, вентилятор и поверхностный теплообменник, расположенный над блоком насадки. Изобретение позволяет повысить охлаждающую мощность и снизить температуру воды ниже температуры по...

Система очистки воды
Изобретение относится к развертываемой в полевых условиях системе очистки воды. Система очистки воды включает несколько модулей, соединяемых водопроводными линиями. Модули содержат, по меньшей мере, один элемент фильтрации воды и, по меньшей мере, один водяной насос, соединенный указанными линиями с элементом фильтрации воды, электродвигатель и двигатель внутреннего сгорания, причем модули включают фильтрационный модуль и, по меньшей мере, два модуля привода насоса, включающие один модуль,...








 

Оставьте свой комментарий на сайте

Имя:*
E-Mail:
Комментарий (комментарии с ссылками не публикуются):

Ваш логин:

Вопрос: 45+2+1+?
Ответ:*
⇩ Информационный блок ⇩

Что ищешь?
⇩ Реклама ⇩
Loading...
⇩ Категории-Меню ⇩
  • Двигатели и движители
    • Двигатели внутреннего сгорания
    • Нестандартные решения в движителях и двигателях
  • Досуг и развлечения
    • Аттракционы
    • Музыкальные инструменты
  • Деревообрабатывающая промышленность
    • Деревообрабатывающее оборудование
  • Извлечение цветных и редкоземельных металлов
    • Извлечение цветных не благородной группы металлов
    • Благородных и редкоземельных металлов
  • Летающие аппараты
  • Металлургия
    • Технологии плавки и сплавы
  • Мебель и мебельная фурнитура
  • Медицина
    • Аллергология
    • Акушерство, гинекология, сексология и сексопатолог
    • Анестезиология
    • Вирусология, паразитология и инфектология
    • Гигиена и санитария
    • Гастроэнтерология, гепатология и панкреатология
    • Гематология
    • Дерматология и дерматовенерология
    • Иммунология и вирусология
    • Кардиохирургия и кардиология
    • Косметология и парикмахерское искусство
    • Медицинская техника
      • Тренажеры
    • Наркология
    • Неврология, невропатология и неонатология
    • Нетрадиционная медицина
    • Онкология и радиология
    • Офтальмология
    • Оториноларингология
    • Психиатрия
    • Педиатрия и неонатология
    • Стоматология
    • Спортивная медицина и физкультура
    • Травматология, артрология, вертебрология, ортопеди
    • Терапия и диагностика
    • Урология
    • Фтизиатрия и пульмонология
    • Фармацевтика
    • Хирургия
    • Эндокринология
  • Насосное и компрессорное оборудование
  • Очистка воздуха и газов
    • Кондиционирование и вентиляция воздуха
  • Пчеловодство
  • Подъёмные устройства и оборудование
  • Подшипники
  • Получение и обработка топлива
    • Твердое топливо
    • Бензин и дизельное топливо
    • Обработка моторных топлив
  • Растениеводство
    • Садовый и огородный инструмент
    • Методики и способы выращивания
  • Роботизированная техника
  • Судостроение
  • Стройиндустрия
    • Строительные технологии
    • Леса, стремянки, лестницы
    • Сантехника, канализация, водопровод
    • Бетон
    • Лакокрасочные, клеевые составы и композиции
    • Ограждающие элементы зданий и сооружений
    • Окна и двери
    • Отделочные материалы
    • Покрытия зданий и сооружений
    • Строительные материалы
    • Специальные строительные смеси и композиции
    • Техника, инструмент и оборудование
    • Устройство покрытий полов
  • Средства индивидуальной защиты
  • Спортивное и охотничье снаряжение
  • Транспортное машиностроение
    • Автомобильные шины, ремонт и изготовление
  • Тепловая энергия
    • Нетрадиционная теплоэнергетика
    • Солнечные, ветровые, геотермальные теплогенераторы
    • Теплогенераторы для жидких сред
    • Теплогенераторы для газообразных сред
  • Технология сварки и сварочное оборудование
  • Устройства и способы водоочистки
    • Обработка воды
    • Опреснительные установки
  • Устройства и способы переработки и утилизации
    • Утилизации бытовых и промышленных отходов
  • Устройства и способы получения водорода и кислород
    • Способы получения и хранения биогаза
  • Удовлетворение потребностей человека
  • Холодильная и криогенная техника
  • Художественно-декоративное производство
  • Электроника и электротехника
    • Вычислительная техника
    • Проводниковые и сверхпроводниковые изделия
    • Устройства охраны и сигнализации
    • Осветительная арматура и оборудование
    • Измерительная техника
    • Металлоискатели и металлодетекторы
    • Системы защиты
    • Телекоммуникация и связь
      • Антенные системы
    • Электронные компоненты
    • Магниты и электромагниты
    • Электроакустика
    • Электрические машины
      • Электродвигатели постоянного и переменного тока
        • Управление и защита электродвигателей
  • Электроэнергетика
    • Альтернативные источники энергии
      • Геотермальные, волновые и гидроэлектростанции
      • Солнечная энергетика
      • Ветроэлектростанции
    • Электростанции и электрогенераторы
    • Использование электрической энергии
    • Химические источники тока
    • Термоэлектрические источники тока
    • Нетрадиционные источники энергии
⇩ Интересное ⇩
Устройство для магнитной обработки жидкости

Устройство для магнитной обработки жидкости Изобретение относится к технике магнитной обработки жидкости и может быть использовано для магнитной обработки воды, жидких нефтепродуктов и нефти.…
читать статью
Обработка моторных топлив, Обработка воды
Система электрохимической очистки сточных вод

Система электрохимической очистки сточных вод Изобретение относится к системам очистки сточных вод. Система очистки сточных вод содержит жироуловитель, пневмофлотатор, электрохимический модуль…
читать статью
Обработка воды
Фильтрующий материал для очистки воды от марганца и железа, способ его получения и способ очистки воды от марганца и железа

Фильтрующий материал для очистки воды от марганца и железа, способ его получения и способ очистки воды от марганца и железа Изобретение относится к способам водоподготовки питьевой воды, а именно к очистке воды от марганца и железа, и может быть использовано на доочистке…
читать статью
Обработка воды
Устройство для уменьшения выноса взвешенных веществ из вторичных отстойников биологических очистных станций

Устройство для уменьшения выноса взвешенных веществ из вторичных отстойников биологических очистных станций Ноу-хау разработки, а именно данное изобретение автора относится к устройствам для интенсификации работы сооружений биологической очистки сточных вод…
читать статью
Обработка воды
Способ приготовления биологически активных жидкостей

Способ приготовления биологически активных жидкостей Ноу-хау разработки, а именно данное изобретение автора относится к области медицины, а именно к удовлетворению жизненных потребностей человека, а…
читать статью
Обработка воды
Способ очистки сточных вод скотобоен и мясокомбинатов

Способ очистки сточных вод скотобоен и мясокомбинатов Изобретения могут быть использованы при очистке воды скотобоен и мясокомбинатов. Сточные воды скотобоен и мясокомбинатов подвергают механической,…
читать статью
Обработка воды
Способ получения сверхчистой питьевой воды и установка для осуществления этого способа

Способ получения сверхчистой питьевой воды и установка для осуществления этого способа Изобретение может быть использовано при обработке воды окислением с помощью озонирования. Перед синтезом озона воздух предварительно охлаждают и…
читать статью
Обработка воды
Способ очистки питьевой воды и устройство для его осуществления

Способ очистки питьевой воды и устройство для его осуществления Ноу-хау разработки, а именно данное изобретение автора относится к водоподготовке, более конкретно к получению питьевой воды с высокими…
читать статью
Обработка воды
Устройство для получения активированной воды и способы ее использования

Устройство для получения активированной воды и способы ее использования Изобретение относится к обработке воды и может использоваться в медицине, пищевой промышленности, а также для полива растений. В устройстве вода…
читать статью
Обработка воды
Устройство для биологической очистки сточных вод

Устройство для биологической очистки сточных вод Назначение: комплексная очистка сточных вод, концентрированных по органическим загрязнениям. Сущность изобретения: трехступенное очистное устройство…
читать статью
Обработка воды
⇩ Вход в систему ⇩

Логин:


Пароль: (Забыли?)


 Чужой компьютер
Регистрация
и подписка на новости
⇩ Ваши закладки ⇩
Функция добавления материалов сайта в свои закладки работает только у зарегистрированных пользователей.
⇩ Новые темы форума ⇩
XML error in File: http://www.ntpo.com/forum/rss.xml
⇩ Каталог организаций ⇩
- Добавь свою организацию -
XML error in File: http://www.ntpo.com/org/rss.php
⇩ Комментарии на сайте ⇩

  • Zinfira_Davletova 07.05.2019
    Природа гравитации (5)
    Zinfira_Davletova-фото
    Очень интересная тема и версия, возможно самая близкая к истине.

  • Viktor_Gorban 07.05.2019
    Способ получения электрической ... (1)
    Viktor_Gorban-фото
     У  Скибитцкого И. Г. есть более свежее  изобретение  патент  России RU 2601286  от  2016 года
     также ,  как  и это  оно  тоже  оказалось  не востребованным.

  • nookosmizm 29.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Никакого начала не было - безконечная вселенная существует изначально, априори как безконечное пространство, заполненное  энергией электромагнитных волн, которые также существуют изначально и материей, которая  состоит из атомов и клеток, которые состоят из вращающихся ЭМ волн.
    В вашей теории есть какие-то гравитоны, которые состоят из не известно чего. Никаких гравитонов нет - есть магнитная энергия, гравитация - это магнитное притяжение.


    Никакого начала не было - вселенная, заполненная энергией ЭМ волн , существует изначально.

  • yuriy_toykichev 28.04.2019
    Энергетическая проблема решена (7)
    yuriy_toykichev-фото
    То есть, никакой энергетической проблемы не решилось от слова совсем. Так как для производства металлического алюминия, тратится уймище энергии. Производят его из глины, оксида и гидроксида алюминия, понятно что с дико низким КПД, что бы потом его сжечь для получения энергии, с потерей ещё КПД ????
    Веселенькое однако решение энергетических проблем, на такие решения никакой энергетики не хватит.

  • Andrey_Lapochkin 22.04.2019
    Генератор на эффекте Серла. Ко ... (3)
    Andrey_Lapochkin-фото
    Цитата: Adnok
    Вместо трудновыполнимых колец, я буду использовать,цилиндрические магниты, собранные в кольцевой пакет, в один, два или три ряда. На мой взгляд получиться фрактал 1 прядка. Мне кажется, что так будет эффективней, в данном случае. И в место катушек, надо попробывать бифиляры или фрактальные катушки. Думаю, хороший будет эксперимент.

    Если что будет получаться поделитесь +79507361473

  • nookosmizm 14.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Проблема в том, что человечество зомбировано религией, что бог создал всё из ничего. Но у многих не хватает ума подумать, а кто создал бога? Если бога никто не создавал - значит он существует изначально. А почему самому космосу и самой вселенной как богу-творцу - нельзя существовать изначально? 
    Единственным творцом материального мира, его составной субстанцией, источником движения и самой жизни является энергия космоса, носителем которой являются ЭМ волны, которыми как и полагается богу заполнено всё космическое пространство, включая атомы и клетки.


    В начале было то, что есть сейчас. 

  • alinzet 04.04.2019
    Новая теория мироздания - прир ... (5)
    alinzet-фото
    Но ведь это и есть эфир а не темная материя хотя эфир можете называть как вам угодно и суть от этого не изменится 

  • valentin_elnikov 26.03.2019
    Предложение о внедрении в прои ... (7)
    valentin_elnikov-фото
    а м?ожет лампочку прямо подключать к силовым линиям,хотя они и тонкие

  • serzh 12.03.2019
    Вода - энергоноситель, способн ... (10)
    serzh-фото
    От углеводородов кормится вся мировая финансовая элита, по этому они закопают любого, кто покусится на их кормушку. Это один. Два - наличие дешевого источника энергии сделает независимым от правительств стран все население планеты. Это тоже удар по кормушке.

  • nookosmizm 06.03.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Вначале было то, что существует изначально и никем не создавалось. А это
    - безграничное пространство космоса
    - безграничное время протекания множества процессов различной длительности
    - электромагнитная энергия, носителем которой являются ЭМ волны, которыми как и положено творцу (богу) материального мира, заполнено всё безграничное пространство космоса, из энергии ЭМВ состоят атомы и клетки, то есть материя.
    Надо различать материю и не материю. Материя - это то, что состоит из атомов и клеток и имеет массу гравитации, не материя - это энергия ЭМ волн, из которых и состоит материя

⇩ Топ 10 авторов ⇩
miha111
Публикаций: 1481
Комментариев: 0
vik-sul
Публикаций: 16
Комментариев: 1
pi31453_53
Публикаций: 9
Комментариев: 0
vikremlev
Публикаций: 1
Комментариев: 0
АНАТОЛИЙ
Публикаций: 0
Комментариев: 0
Patriothhv
Публикаций: 0
Комментариев: 0
agrohimwqn
Публикаций: 0
Комментариев: 0
agrohimxjp
Публикаций: 0
Комментариев: 0
Patriotzqe
Публикаций: 0
Комментариев: 0
kapriolvyd
Публикаций: 0
Комментариев: 0
⇩ Лучшее в Архиве ⇩

Нужна регистрация
⇩ Реклама ⇩

Внимание! При полном или частичном копировании не забудьте указать ссылку на www.ntpo.com
NTPO.COM © 2003-2021 Независимый научно-технический портал (Portal of Science and Technology)
Содержание старой версии портала
  • Уникальная коллекция описаний патентов, актуальных патентов и технологий
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения электроэнергии
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения тепловой энергии
    • Двигатели, работа которых основана на новых физических или технических принципах работы
    • Автомобильный транспорт и другие наземные транспортные средства
    • Устройства и способы получения бензина, Дизельного и других жидких или твердых топлив
    • Устройства и способы получения, хранения водорода, кислорода и биогаза
    • Насосы и компрессорное оборудование
    • Воздухо- и водоочистка. Опреснительные установки
    • Устройства и способы переработки и утилизации
    • Устройства и способы извлечения цветных, редкоземельных и благородных металлов
    • Инновации в медицине
    • Устройства, составы и способы повышения урожайности и защиты растительных культур
    • Новые строительные материалы и изделия
    • Электроника и электротехника
    • Технология сварки и сварочное оборудование
    • Художественно-декоративное и ювелирное производство
    • Стекло. Стекольные составы и композиции. Обработка стекла
    • Подшипники качения и скольжения
    • Лазеры. Лазерное оборудование
    • Изобретения и технологии не вошедшие в выше изложенный перечень
  • Современные технологии
  • Поиск инвестора для изобретений
  • Бюро научных переводов
  • Большой электронный справочник для электронщика
    • Справочная база данных основных параметров отечественных и зарубежных электронных компонентов
    • Аналоги отечественных и зарубежных радиокомпонентов
    • Цветовая и кодовая маркировка отечественных и зарубежных электронных компонентов
    • Большая коллекция схем для электронщика
    • Программы для облегчения технических расчётов по электронике
    • Статьи и публикации связанные с электроникой и ремонтом электронной техники
    • Типичные (характерные) неисправности бытовой техники и электроники
  • Физика
    • Список авторов опубликованных материалов
    • Открытия в физике
    • Физические эксперименты
    • Исследования в физике
    • Основы альтернативной физики
    • Полезная информация для студентов
  • 1000 секретов производственных и любительских технологий
    • Уникальные технические разработки для рыбной ловли
  • Занимательные изобретения и модели
    • Новые типы двигателей
    • Альтернативная энергетика
    • Занимательные изобретения и модели
    • Всё о постоянных магнитах. Новые магнитные сплавы и композиции
  • Тайны космоса
  • Тайны Земли
  • Тайны океана
Рейтинг@Mail.ru