Ноу-хау разработки, а именно данное изобретение автора относится к сварочному оборудованию и может быть использовано для газопламенной обработки материалов в промышленности, быту, при ремонте автомобилей и т.д. Технический результат - расширение диапазона рабочих характеристик устройства и повышение безопасности при его эксплуатации. Устройство содержит электролизер, состоящий из ряда электролитических ячеек, образованных диэлектрическими прокладками и электродами, сообщающимися по газу и по...
Область деятельности(техники), к которой относится описываемое изобретение
Заявляемое техническое решение относится к технологии электрохимических производств, а именно к устройствам для получения водорода и кислорода методом электролиза воды.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Известен электролизер воды трубчатого типа по патенту РФ на изобретение 2258767 (класс МПК С25В 1/04, приоритет 19.03.2003 г.) для получения водорода и кислорода путем электролиза воды, который содержит герметичную емкость с электродами, крышку, входные и выходные трубки. Электролизер снабжен регулятором уровня жидкости, выполненным в форме трубки, соединенной с герметичной емкостью, заполненной дистиллированной водой, с возможностью автоматического регулирования уровня жидкости в емкости электролизера при помощи вакуумного клапана. Электролизер соединен с емкостью жидкой щелочи через дозатор, снабженный соленоидом и реле времени. Электролизер соединен также с горелкой при помощи выходных труб, расположенных на разных уровнях и выполненных с возможностью раздельного извлечения из воды водорода и кислорода, полученных в процессе электролиза и перемещения их при помощи вакуум-насосов.
Недостатком данного электролизера является низкие производительность, надежность и долговечность.
Конструкция электролизера по патенту США на изобретение 7510633 (класс МПК С25В 1/10, приоритет 21.02.2003 г.) для получения водорода и кислорода, принятая за прототип, включает в себя катод трубчатой формы, анод - в виде стержня, мембрану, анодную и катодную полость с электролитом, водородный и кислородный коллектор, насос для электролита.
Перед началом работы электролизера, в анодную и катодную полости ячейки между которыми установлена мембрана, подается раствор электролита. Затем на электроды подается электрическая нагрузка. Электролит в анодной и катодной полости ячейки циркулирует при помощи насоса. Газовые пузыри, выделившиеся на электродах, совместно с электролитом, покидают ячейку через газовые каналы. Далее в кислородной и водородной емкостях газ отделяется от электролита, после чего газ поступает в баллон (либо иную емкость), а электролит собирается в общую емкость и с помощью насоса используется в дальнейшей работе.
Недостатками данного устройства являются:
rnrnrnrnrnrnrnrnrn
- излишние энергетические затраты, из-за наличия расстояния между электродами (за счет анодной и катодной полостей), следовательно и рост сопротивления, что увеличивает потребляемую мощность и снижает производительность устройства;
- наличие высоких токов утечки, так как использование в конструкции электролизера общего электролитного коллектора заполненного раствором электролита, снижает производительность в целом всей установки.
Задачей заявляемой конструкции электролизера для получения водорода и кислорода из воды (водного раствора щелочи), является снижение потребляемой мощности, повышение производительности, а также надежности и безопасности в эксплуатации.
Поставленная техническая задача решается за счет того, что в электролизере для получения водорода и кислорода из воды включающем ряд последовательно соединенных ячеек, состоящих из катодов трубчатой формы, анодов выполненных в виде трубы, мембраны между катодом и анодом, исключающей смешивание выделившихся газов, анодной и катодной полостей, насосов для циркуляции электролита, емкости с щелочным электролитом, устройств для отделения газов от электролита, согласно заявляемой конструкции электролизера для получения водорода и кислорода из воды, набор из нескольких ячеек помещен в корпус. Анод и катод в ячейке плотно прилегают к газозапорной мембране, в качестве анода используется труба, выполненная из сетчатого материала (для легкого прохождения выделившегося анодного газа через анод), а в качестве катода - полый цилиндр из пористого гидрофобизированного материала. Анодные полости ячеек, заполненные электролитом, последовательно соединены между собой и с емкостью щелочного электролита, которая в свою очередь соединена с устройством для отделения кислорода от паров воды и щелочи, системой подачи воды и теплообменником. Катодная полость образована внешней стороной катодов ячеек и корпусом. Она не заполнена электролитом, является газовой и соединена с емкостью гидрозатвора и устройством для отделения водорода от паров щелочи и воды. Движение электролита в анодной полости осуществляется за счет эффекта «аэролифта». Для снижения напряжения электролизера, и, как следствие, уменьшения энергетических затрат, на поверхность анода и внутреннюю поверхность катода может быть нанесен катализатор.
Существенным отличием заявляемого устройства является то, что электроды плотно прилегают к газозапорной мембране, а анодная полость представляет собой трубу, заполненную электролитом. Также в данной конструкции хоть и находится общий электролитный коллектор, образованный соединением анодных полостей ячеек друг с другом, но в связи с тем, что выделившийся газ вспенивает электролит, площадь сечения электролитного моста в местах соединения ячеек-электролизеров значительно меньше, что в значительной степени снижает токи утечки и как следствие, энергозатраты, увеличивая производительность установки в целом. Кроме того, предлагаемая конструкция легко размещается в трубе небольшого диаметра, которая является одновременно и корпусом, обеспечивая повышенную прочность при незначительной толщине стенки и, соответственно, способствует снижению массы электролизера.
Между собой ячейки могут быть электрически соединены последовательно или параллельно. Последовательное соединение предпочтительней.
Электролизер для получения водорода и кислорода из воды
На фиг.1 изображено заявляемое устройство, на фиг.2 на виде А-А показан корпус и ячейка в разрезе.
Заявляемая конструкция электролизера для получения водорода и кислорода из воды включает в себя следующие элементы: корпус (1) в виде трубы, например, круглого сечения, размещенные в нем ячейки (2), соединенные между собой последовательно. Емкость с раствором щелочного электролита (3) в которой с помощью насоса подающего воду (4), поддерживается необходимая для работы электролизера концентрация электролита, поступающего с помощью насоса (5) из гидрозатвора (емкости с конденсатом и раствором щелочи) (6). Электролит для поддержания рабочей температуры электролизера, циркулируя через теплообменник (7), подается в ячейки (2). Для циркуляции электролита, в случае необходимости, включается насос (8). Устройство для отделения водорода от щелочи и паров воды (9) соединено с гидрозатвором (6) и катодной полостью (10) заявляемого электролизера. Устройство для отделения кислорода от щелочи и паров воды (11) соединено с емкостью с раствором щелочного электролита (3). На корпусе установлены токовыводы (12) для подачи нагрузки.
корпус и ячейка электролизера в разрезе
rnrnrnrnrnrnrnrnrn
На фиг.2 (вид А-А) в разрезе показан корпус (1), например, круглого сечения, находящаяся в нем ячейка (2), представляющая собой катод (13) в виде цилиндра из пористого гидрофобизированного материала, анод (14) в виде трубы и расположенную между ними без зазора газозапорную мембрану (15). В анодной полости (16) ячейки (2) находится электролит, а внешняя сторона катодов (13) ячеек (2) и корпус (1) образуют катодную полость (10) электролизера.
Электролизер для получения водорода и кислорода из воды работает следующим образом
В корпусе (1) ячейки (2), число которых определяется необходимой производительностью электролизера, соединены между собой электрически последовательно. Кроме того, ячейки (2) последовательно соединяются между собой и по анодной полости (16), в которой циркулирует электролит. Катодная полость электролизера (10) является газовой, на дне которой собирается конденсат и раствор электролита, просочившийся через поры катода (13). Циркуляция электролита происходит за счет движения выделяемого при электролизе газа (эффект аэролифта) и при недостаточной подъемной силе возможно включение насоса (8). Для поддержания определенной рабочей температуры электролизера, электролит проходит через теплообменник (7). Электролит в виде пены попадает в емкость с раствором электролита (3), откуда, освободившись от газа, заново попадает в ячейки (2). Выделяясь, катодный газ насыщается парами воды и частично выносит щелочь из электролизера, некоторая часть которой конденсируется на стенках корпуса (1). Затем конденсат стекает в емкость гидрозатвора (6), далее при помощи насоса (5) перекачивается в емкость с раствором щелочного электролита (3). Для поддержания заданной концентрации электролита в анодных полостях (16) ячеек (2) в емкость с раствором щелочного электролита (3) подается вода при помощи насоса (4). Наработанные водород и кислород отводятся из электролизера для дальнейшего их использования, предварительно удаляя из них остатки щелочи и пары воды, соответственно в устройствах (9) и (11).
В качестве материала для анода была применена никелевая сетка с нанесенным на нее катализаторм - серебром, для катода полый цилиндр из пористого никеля, покрытый с внутренней стороны платино-родиевым катализатором, а газозапорной мембраны - кремнесодержа-щий волокнистый материал с добавлением фторопласта.
Как показали испытания, использование заявляемой конструкции электролизера позволяет:
- снизить до 7% потребляемую мощность и до 5% повысить производительность. Это достигается в заявляемой конструкции электролизера за счет плотного прилегания электродов (анода и катода) к газозапорной мембране и сокращения площади сечения электролитного моста в местах соединения ячеек, за счет того, что выделившийся в процессе работы электролизера газ вспенивает электролит в общем электролитном коллекторе. Это позволяет в значительной степени снизить токи утечки и, как следствие, энергозатраты, тем самым увеличивая производительность установки в целом;
- за счет использования единого корпуса, в котором размещаются ячейки, конструкция содержит меньше соединительных элементов вне корпуса электролизера, что позволяет снизить массо-габаритные характеристики, повысить надежность и безопасность электролизера в эксплуатации.
Формула изобретения
1. Электролизер для получения водорода и кислорода из воды, включающий последовательно соединенные между собой ячейки, состоящие из катода, анода, размещенной между ними газозапорной мембраны, исключающей смешивание выделившихся газов, насосы для циркуляции щелочного электролита, емкости с щелочным электролитом, систему подачи воды, устройство для отделения кислорода от паров воды и щелочи и устройство для отделения водорода от паров воды и щелочи, отличающийся тем, что он снабжен корпусом для размещения в нем соединенных последовательно между собой ячеек, анод каждой из ячеек выполнен в виде трубы из сетчатого материала, а катод - в виде полого цилиндра из пористого гидрофобизированного материала, причем анод и катод каждой из ячеек размещены вплотную к газозапорной мембране с образованием катодной газовой полости между внешней стороной катодов и корпусом, соединенной с емкостью гидрозатвора, емкостью щелочного электролита и устройством для отделения водорода от паров воды и щелочи, при этом ячейки соединены анодными полостями с теплообменником и с емкостью щелочного электролита, которая, в свою очередь, соединена с устройством для отделения кислорода от паров воды и щелочи и системой подачи воды.
2. Электролизер по п.1, отличающийся тем, что ячейки электрически соединены последовательно.
3. Электролизер по п.1, отличающийся тем, что на поверхность анода и внутреннюю поверхность катода ячеек нанесены катализаторы.
4. Электролизер по п.1, отличающийся тем, что в качестве материала катода ячеек использован пористый гидрофобизированный никель.
5. Электролизер по п.1, отличающийся тем, что анод выполнен из никелевой сетки.
Имя изобретателя: Баранников Владимир Васильевич (RU), Большаков Константин Геннадьевич (RU), Кондратьев Дмитрий Геннадьевич (RU), Потанин Андрей Васильевич (RU), Шихов Евгений Геннадьевич (RU) Имя патентообладателя: Открытое акционерное общество "УРАЛЬСКИЙ ЭЛЕКТРОХИМИЧЕСКИЙ КОМБИНАТ" Почтовый адрес для переписки: 624130, Свердловская обл., г. Новоуральск, ул. Дзержинского, 2, ОАО "УЭХК", технический отдел, О.В. Елистратову Дата начала отсчета действия патента: 11.05.2012
Разместил статью: admin
Дата публикации: 25-12-2013, 00:15
Изобретение относится к области химии. Водород получают путем подачи в реактор между железными электродами периодически воды и алюминиевого порошка. Полученная алюмоводная суспензия контактирует с электродами, на которые периодически подают электрический импульс с плотностью введенной в алюмоводную суспензию энергиии 5-15 кДж/г. Диспергируют порошок, образуя жидкие наночастицы алюминия, которые, взаимодействуя с водой, образуют окислы алюминия и газообразный водород. Изобретение позволяет...
Область применения: касается получения химических веществ и относится к способам получения водорода, например, действием металлов на воду. Сущность изобретения: способ получения водорода заключается в активации металла, пассивированного оксидной пленкой, в нейтральном солевом растворе при пропускании электрического тока. Новым в способе является то, что в качестве восстановителя водорода из воды используют алюминий в растворе галогенида щелочного или щелочно-земельного металла при пропускании...
Никакого начала не было - безконечная вселенная существует изначально, априори как безконечное пространство, заполненное энергией электромагнитных волн, которые также существуют изначально и материей, которая состоит из атомов и клеток, которые состоят из вращающихся ЭМ волн.
В вашей теории есть какие-то гравитоны, которые состоят из не известно чего. Никаких гравитонов нет - есть магнитная энергия, гравитация - это магнитное притяжение.
Никакого начала не было - вселенная, заполненная энергией ЭМ волн , существует изначально.
То есть, никакой энергетической проблемы не решилось от слова совсем. Так как для производства металлического алюминия, тратится уймище энергии. Производят его из глины, оксида и гидроксида алюминия, понятно что с дико низким КПД, что бы потом его сжечь для получения энергии, с потерей ещё КПД ????
Веселенькое однако решение энергетических проблем, на такие решения никакой энергетики не хватит.
Вместо трудновыполнимых колец, я буду использовать,цилиндрические магниты, собранные в кольцевой пакет, в один, два или три ряда. На мой взгляд получиться фрактал 1 прядка. Мне кажется, что так будет эффективней, в данном случае. И в место катушек, надо попробывать бифиляры или фрактальные катушки. Думаю, хороший будет эксперимент.
Проблема в том, что человечество зомбировано религией, что бог создал всё из ничего. Но у многих не хватает ума подумать, а кто создал бога? Если бога никто не создавал - значит он существует изначально. А почему самому космосу и самой вселенной как богу-творцу - нельзя существовать изначально?
Единственным творцом материального мира, его составной субстанцией, источником движения и самой жизни является энергия космоса, носителем которой являются ЭМ волны, которыми как и полагается богу заполнено всё космическое пространство, включая атомы и клетки.
От углеводородов кормится вся мировая финансовая элита, по этому они закопают любого, кто покусится на их кормушку. Это один. Два - наличие дешевого источника энергии сделает независимым от правительств стран все население планеты. Это тоже удар по кормушке.
Вначале было то, что существует изначально и никем не создавалось. А это
- безграничное пространство космоса
- безграничное время протекания множества процессов различной длительности
- электромагнитная энергия, носителем которой являются ЭМ волны, которыми как и положено творцу (богу) материального мира, заполнено всё безграничное пространство космоса, из энергии ЭМВ состоят атомы и клетки, то есть материя.
Надо различать материю и не материю. Материя - это то, что состоит из атомов и клеток и имеет массу гравитации, не материя - это энергия ЭМ волн, из которых и состоит материя