Загрузка. Пожалуйста, подождите...

Независимый научно-технический портал

RSS Моб. версия Реклама
Главная О портале Регистрация
Независимый Научно-Технический Портал NTPO.COM приветствует Вас - Гость!
  • Организации
  • Форум
  • Разместить статью
  • Возможен вход через:
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Способ извлечения золота и серебра из полиметаллического сырья
Изобретения Российской Федерации » Извлечение цветных и редкоземельных металлов
Способ извлечения золота и серебра из полиметаллического сырья Ноу-хау разработки, а именно данное изобретение автора относится к гидрометаллургии благородных металлов, в частности к способам извлечения золота и серебра из различных видов полиметаллического сырья, в состав которого могут входить медь, никель, олово, свинец, нержавеющая сталь и другие металлы. Технический результат - селективное извлечение золота и серебра из токопроводящих материалов, обеспечивающий высокие скорости растворения драгоценных металлов. Способ заключается в обработке...
читать полностью


» Изобретения Российской Федерации » Устройства и способы получения водорода и кислород
Добавить в избранное
Мне нравится 0


Сегодня читали статью (1)
Пользователи :(0)
Пусто

Гости :(1)
0
Добавить эту страницу в свои закладки на сайте »

Способ изготовления электрода для электрохимических процессов


Отзыв на форуме  Оставить комментарий

Область деятельности(техники), к которой относится описываемое изобретение

Изобретение относится к электрохимическим производствам, в частности, к технологии изготовления металлоксидных анодов, применяемых при электролизе разбавленных хлоридных растворов и морской воды.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Известен также электрод из смеси оксидов марганца и кобальта для электролиза разбавленных хлоридных растворов, получаемый по сходной технологии [1].
Недостаткам этого электрода и способа его изготовления является большой расход солей марганца и других металлов, используемых при получении электрода, и низкая селективность этого электрода к реакции выделения кислорода (РВК) при электролизе разбавленных хлоридных растворов.

Наиболее близким к заявляемому решению по технической сущности и достигаемому результату является способ получения электрода, состоящего из токопроводящей основы (титан), подслоя из оксидов рутения, титана и олова, который содержит, вес. RuO2 25, TiO2 55, SnO2 20 и активного покрытия из диоксида марганца, полученного анодным осаждением из раствора, содержащего хлорид марганца [2] Способ изготовления этого электрода заключается в следующем. На титановую основу наносят водные растворы солей рутения, титана и олова в соотношении 25: 55: 20 весовых процентов, которые подсушивают при температуре 95-100oС и затем нагревают в течение 5 минут при температуре 450oС; процесс повторяют три раза и окончательную обработку покрытия осуществляют при температуре 450oС в течение 40 минут. Покрытие состоит из диоксидов рутения, титана и олова и получено по стандартной методике приготовления оксидно-рутениево-титаново-оловянного анода (ОРТОА).

Далее на полученный подслой из ОРТОА наносят электрокаталитическое покрытие из диоксида марганца по следующей методике. На электрод анодным осаждением при плотности тока 155 мА/см2 в течение 20 минут при температуре 25oС из раствора, содержащего 28 г/л хлористого натрия, 230 мг/л хлористого марганца и 10 г/л соляной кислоты, осаждают диоксид марганца. В процессе электролиза выделяющийся на аноде хлор заменяется кислородом.

Недостатками данного анода и способа его получения являются:

  • формирование тонкого слоя электрокаталитического покрытия из диоксида марганца;
  • снижение селективности к РВК при многократном использовании анода;
  • низкая стабильность при электролизе разбавленных хлоридных растворов.

Исходя из недостатков прототипа в основу изобретения поставлена задача повысить селективность электрода к реакции выделения кислорода и его стабильность путем увеличения толщины покрытия из двуокиси марганца.

rnrnrnrnrnrnrnrnrn

Поставленная задача решается путем изменения состава электролита, из которого производится осаждение электрокаталитического покрытия, токовых и временных режимов его формирования.

Способ изготовления электрода состоит в следующем. Пластину из титана, обычно марки ВТ-1-0, обезжиривают по известной методике и подвергают травлению сначала в кипящей концентрированной соляной кислоте в течение 2 5 минут, а затем в 1М водном растворе щавелевой кислоты при температуре 90oС в течение 60 минут. На подготовленную, таким образом, подложку наносят смесь растворов, содержащую, вес. RuCl3 25, TiCl3 55, SnCl2 20. Покрытие подсушивают на воздухе при температуре 60 - 100oС в течение 1-3 минут; процедуру повторяют три раза для нанесения расчетного количества активного покрытия (0,7 мг/см2 по содержанию рутения). После нанесения последнего слоя производят заключительную термообработку на воздухе при 450oС в течение 40 минут. Полученный подслой состоит из диоксидов рутения, титана и олова и получен по стандартной методике приготовления ОРТОА.

На полученный по вышеописанному способу подслой наносят электрокаталитическое покрытие диоксида марганца путем анодного осаждения из электролита, содержащего 28-30 г/л хлорида марганца, 10 г/л соляной кислоты в интервале плотностей тока 100 130 мА/см2, температуре 20-25oС в течение 60-90 минут.

В процессе нанесения диоксида марганца осуществляют контроль за выделением активного хлора. Критерием завершения процесса является достижение в описанных условиях максимального выхода по току РВК (соответственно, минимального выхода по току активного хлора). Так как аналитически хлор определяется достаточно просто по сравнению с кислородом, то контроль за реакцией выделения кислорода осуществляют косвенно, определяя выход по току активного хлора. На фигурах 1 и 2 представлены зависимости выхода по току активного хлора и кислорода, соответственно, от плотности тока и времени электролиза. Как видно из фиг. 1 на вышеуказанном аноде, в отличие от типичного электрода ОРТА (кр. 2), достигается практически нулевое содержание активного хлора (кр. 1) и, соответственно, высокая, более 99,5% селективность к РВК при электролизе разбавленных хлоридных растворов. На фиг. 2 сопоставлены выходы по току кислорода, полученные газохроматографическим анализом газовой фазы (кр. 1) и определением активного хлора в электролите на селективном к РВК диоксид-марганцевом аноде (кр. 2). Обе фигуры иллюстрируют получение по предлагаемому способу высокоселективных к реакции выделения кислорода анодов при электролизе разбавленных хлоридных растворов.

зависимости выхода по току активного хлора и кислорода, соответственно, от плотности тока и времени электролиза.зависимости выхода по току активного хлора и кислорода, соответственно, от плотности тока и времени электролиза.

зависимости выхода по току активного хлора и кислорода, соответственно, от плотности тока и времени электролиза.зависимости выхода по току активного хлора и кислорода, соответственно, от плотности тока и времени электролиза.

Существенными отличительными признаками заявляемого изобретения по отношению к прототипу являются:

  • измененный состав электролита при анодном осаждении диоксида марганца, а именно: концентрация хлористого марганца 28-30 г/л и полное исключение из состава электролита хлорида натрия;
  • использование плотностей тока 100-130 мА/см2;
  • нанесение электролитического покрытия из диоксида марганца в течение 60-90 минут.

Отличительные признаки в совокупности с известными обеспечивают решению новое техническое свойство, заключающееся в изготовлении анода с улучшенными эксплуатационными характеристиками. При оптимальных условиях формирования покрытия: плотности тока 130 мА/см2, концентрации хлорида марганца 30 г/л и времени 90 минут толщина покрытия двуокиси марганца составляет 3-4 мкм (по прототипу 1 мкм), селективность по реакции выделения кислорода при электролизе разбавленных хлоридных растворов достигает 99,7% (по прототипу - 99,0% ), время стабильной работы анода, оцененное по постоянству напряжения на ячейке не менее 1400 часов (по прототипу 350 часов). Фиг. 3 иллюстрирует постоянство потенциала (напряжения на ячейке) анода от времени электролиза в разбавленных хлоридных растворах, что указывает на устойчивость покрытия по заявляемому способу при длительном электролизе.

постоянство потенциала (напряжения на ячейке) анода от времени электролиза в разбавленных хлоридных растворах, что указывает на устойчивость покрытия по заявляемому способу при длительном электролизе.постоянство потенциала (напряжения на ячейке) анода от времени электролиза в разбавленных хлоридных растворах, что указывает на устойчивость покрытия по заявляемому способу при длительном электролизе.

На основании изложенного можно заключить, что совокупность существенных признаков заявленного изобретения имеет причинно-следственную связь с достигаемым техническим результатом. Указанные выше отличительные признаки не обнаружены заявителем в доступных источниках информации. Следовательно, заявляемое техническое решение обладает новизной и имеет изобретательский уровень, так как оно явным образом не следует из уровня техники.

rnrnrnrnrnrnrnrnrn

Заявляемый способ осуществляют следующим образом. Пластину из титана (ВТ-1-0) размером 20Х20 мм обезжиривают по известной методике, подвергают травлению в кипящей концентрированной соляной кислоте в течение 2-5 минут, затем в 1М растворе щавелевой кислоты при температуре 90oС в течение 60 минут. На подготовленную, таким образом, подложку наносят смесь водных растворов, содержащую, вес. RuCl3 25, TiCl3 55, SnCl2 20. Покрытие подсушивают на воздухе при температуре 60-100oС в течение 1-3 минут, процедуру повторяют три раза для нанесения расчетного количества компонентов подслоя (0,7 мг/см2 по содержанию рутения). После нанесения последнего слоя производят заключительную термообработку на воздухе при 450oС в течение 40 минут. На полученный подслой наносят электрокаталитическое покрытие из диоксида марганца путем анодного осаждения из электролита, содержащего 30 г/л хлорида марганца и 10 г/л соляной кислоты при плотности тока 130 мА/см2 и времени осаждения 90 минут. Контроль селективности реакции выделения кислорода осуществляют непосредственно в ходе формирования покрытия по концентрации активного хлора. В таблице приведены сведения о влиянии режимов и условий формирования покрытия на селективность реакции выделения кислорода в разбавленных хлоридных растворах (30 г/л хлорида натрия).

В таблице приведены сведения о влиянии режимов и условий формирования покрытия на селективность реакции выделения кислорода в разбавленных хлоридных растворах (30 г/л хлорида натрия).В таблице приведены сведения о влиянии режимов и условий формирования покрытия на селективность реакции выделения кислорода в разбавленных хлоридных растворах (30 г/л хлорида натрия).

При сопоставлении данных таблицы (примеры 1-5) видно, что снижение концентрации хлорида марганца по сравнению с заявляемыми значениями (28-30 г/л) до 10 г/л приводит к снижению выхода по току (ВТ) реакции выделения кислорода при оптимальных плотности тока и времени осаждения покрытия. Повышение концентрации хлорида марганца выше 30 г/л также нецелесообразно (пример 5), как по соображениям расхода компонентов электролита, так и по снижению селективности РВК. Кроме того, в целях упрощения состава электролита и сокращения расхода реагентов из электролита полностью исключен хлористый натрий, входящий в состав электролита по прототипу. Показано (пример 16), что исключение этого компонента из состава электролита не ухудшает электрокаталитические свойства покрытия. ВТ РВК в примерах 4, 9, 14 выше, чем в примере 16.

Снижение и повышение плотности тока по сравнению с заявляемым интервалом (примеры 6, 10) приводят к уменьшению селективности РВК по сравнению с максимальными величинами ВТ при оптимальных концентрации MnCl2 и времени формирования покрытия.

Изменение времени формирования покрытия из диоксида марганца по сравнению с заявляемым интервалом (примеры 11, 15) при оптимальных плотности тока и концентрации электролита по хлориду марганца приводит к снижению селективности (ВТ) РВК.

Таким образом, приведенные экспериментальные данные подтверждают параметры осуществления заявляемого способа получения электрода с электрокаталитическим покрытием из диоксида марганца: концентрация хлористого марганца в электролите 28-30 г/л при полном исключении из состава электролита хлорида натрия; плотность тока 100-130 мА/см2 время нанесения электрокаталитического покрытия из диоксида марганца 60-90 минут.

Приведенные выше режимы осуществления заявляемого способа позволяют получать электроды для электрохимических процессов, обладающих следующими преимуществами по сравнению с прототипом:

  • более высокая селективность к реакции выделения кислорода при электролизе разбавленных хлоридных растворов;
  • большая стабильность в условиях электролиза;
  • упрощение состава электролита, из которого ведется формирование электрода.

Заявляемый способ изготовления электродов позволяет получать селективные к реакции выделения кислорода аноды, которые могут найти широкое применение в различных областях техники, например: в устройствах преобразования энергии океана за счет прямого электролиза морской воды с получением водорода и кислорода и полным отсутствием хлора и хлоропродуктов; при гидроэлектрометаллургии из хлоридных растворов без выделения хлора на аноде; при электродиализе хлоридных растворов и морской воды с подавлением хлорной реакции в анодной камере.

В лаборатории модифицированных систем Научно-исследовательского физико-технического института при Дальневосточном государственном университете изготовлены серии электродов по заявляемому способу. Проведенные испытания показали высокую электрокаталитическую активность (селективность) анод к реакции выделения кислорода и возможность их длительного использования при работе в разбавленных хлоридных растворах, что очень существенно при практическом применении электродов.

Формула изобретения

Способ изготовления электрода для электрохимических процессов, включающий нанесение на токопроводящую основу подслоя оксидов рутения, титана и олова с последующим анодным осаждением на него электрокаталитического покрытия диоксида марганца из хлоридного электролита, отличающийся тем, что в качестве хлоридного электролита используют электролит состава, г/л:

  • Хлорид марганца 28,0 30,0
  • Соляная кислота 10,0
  • а осаждение диоксида марганца ведут при плотности тока 100 130 мА/см2 в течение 60 90 мин.

Разместил статью: admin
Дата публикации:  26-10-2013, 14:44

html-cсылка на публикацию
⇩ Разместил статью ⇩

avatar

Фомин Дмитрий Владимирович

 Его публикации 


Нужна регистрация

Отправить сообщение
BB-cсылка на публикацию
Прямая ссылка на публикацию
Огромное Спасибо за Ваш вклад в развитие отечественной науки и техники!

Электрод и способ его получения
Использование: в мембранном электролизе. Сущность изобретения: предложен электрод для электролиза, состоящий из электропроводного металла, на его поверхности выдавлен по меньшей мере один центральный вертикальный циркуляционный канал и направленные вверх каналы типа "елочки", при этом направленные вверх каналы образуют угол менее 90o с горизонтальной линией в плоскости поверхности электрода и сообщаются с расположенным по центру вертикально направленным циркуляционным каналом. В...

Способ получения электрода
Изобретение относится к способам получения электродов. Выделяющий водород электрод, снабженный покрытием, содержащим окисел, по меньшей мере, одного металла, выбираемого из группы, которая включает в себя никель и кобальт, обладающий, как это было установлено, исключительно низким перенапряжением водорода и не только высокой каталитической активностью, но и высокой прочностью. В том случае, если такой электрод снабжен восстановительным покрытием, которое получено восстановлением упомянутого...








 

Оставьте свой комментарий на сайте

Имя:*
E-Mail:
Комментарий (комментарии с ссылками не публикуются):

Ваш логин:

Вопрос: Солнце - это планета или звезда? (планета или звезда)
Ответ:*
⇩ Информационный блок ⇩

Что ищешь?
⇩ Реклама ⇩
Loading...
⇩ Категории-Меню ⇩
  • Двигатели и движители
    • Двигатели внутреннего сгорания
    • Нестандартные решения в движителях и двигателях
  • Досуг и развлечения
    • Аттракционы
    • Музыкальные инструменты
  • Деревообрабатывающая промышленность
    • Деревообрабатывающее оборудование
  • Извлечение цветных и редкоземельных металлов
    • Извлечение цветных не благородной группы металлов
    • Благородных и редкоземельных металлов
  • Летающие аппараты
  • Металлургия
    • Технологии плавки и сплавы
  • Мебель и мебельная фурнитура
  • Медицина
    • Аллергология
    • Акушерство, гинекология, сексология и сексопатолог
    • Анестезиология
    • Вирусология, паразитология и инфектология
    • Гигиена и санитария
    • Гастроэнтерология, гепатология и панкреатология
    • Гематология
    • Дерматология и дерматовенерология
    • Иммунология и вирусология
    • Кардиохирургия и кардиология
    • Косметология и парикмахерское искусство
    • Медицинская техника
      • Тренажеры
    • Наркология
    • Неврология, невропатология и неонатология
    • Нетрадиционная медицина
    • Онкология и радиология
    • Офтальмология
    • Оториноларингология
    • Психиатрия
    • Педиатрия и неонатология
    • Стоматология
    • Спортивная медицина и физкультура
    • Травматология, артрология, вертебрология, ортопеди
    • Терапия и диагностика
    • Урология
    • Фтизиатрия и пульмонология
    • Фармацевтика
    • Хирургия
    • Эндокринология
  • Насосное и компрессорное оборудование
  • Очистка воздуха и газов
    • Кондиционирование и вентиляция воздуха
  • Пчеловодство
  • Подъёмные устройства и оборудование
  • Подшипники
  • Получение и обработка топлива
    • Твердое топливо
    • Бензин и дизельное топливо
    • Обработка моторных топлив
  • Растениеводство
    • Садовый и огородный инструмент
    • Методики и способы выращивания
  • Роботизированная техника
  • Судостроение
  • Стройиндустрия
    • Строительные технологии
    • Леса, стремянки, лестницы
    • Сантехника, канализация, водопровод
    • Бетон
    • Лакокрасочные, клеевые составы и композиции
    • Ограждающие элементы зданий и сооружений
    • Окна и двери
    • Отделочные материалы
    • Покрытия зданий и сооружений
    • Строительные материалы
    • Специальные строительные смеси и композиции
    • Техника, инструмент и оборудование
    • Устройство покрытий полов
  • Средства индивидуальной защиты
  • Спортивное и охотничье снаряжение
  • Транспортное машиностроение
    • Автомобильные шины, ремонт и изготовление
  • Тепловая энергия
    • Нетрадиционная теплоэнергетика
    • Солнечные, ветровые, геотермальные теплогенераторы
    • Теплогенераторы для жидких сред
    • Теплогенераторы для газообразных сред
  • Технология сварки и сварочное оборудование
  • Устройства и способы водоочистки
    • Обработка воды
    • Опреснительные установки
  • Устройства и способы переработки и утилизации
    • Утилизации бытовых и промышленных отходов
  • Устройства и способы получения водорода и кислород
    • Способы получения и хранения биогаза
  • Удовлетворение потребностей человека
  • Холодильная и криогенная техника
  • Художественно-декоративное производство
  • Электроника и электротехника
    • Вычислительная техника
    • Проводниковые и сверхпроводниковые изделия
    • Устройства охраны и сигнализации
    • Осветительная арматура и оборудование
    • Измерительная техника
    • Металлоискатели и металлодетекторы
    • Системы защиты
    • Телекоммуникация и связь
      • Антенные системы
    • Электронные компоненты
    • Магниты и электромагниты
    • Электроакустика
    • Электрические машины
      • Электродвигатели постоянного и переменного тока
        • Управление и защита электродвигателей
  • Электроэнергетика
    • Альтернативные источники энергии
      • Геотермальные, волновые и гидроэлектростанции
      • Солнечная энергетика
      • Ветроэлектростанции
    • Электростанции и электрогенераторы
    • Использование электрической энергии
    • Химические источники тока
    • Термоэлектрические источники тока
    • Нетрадиционные источники энергии
⇩ Интересное ⇩
Способ получения водорода из воды и устройство для его осуществления

Способ получения водорода из воды и устройство для его осуществления Изобретение относится к водородной энергетике. Способ получения водорода из воды включает обработку воды одновременно электрическим и магнитным…
читать статью
Устройства и способы получения водорода и кислород
Способ получения водорода и устройство для его осуществления

Способ получения водорода и устройство для его осуществления Ноу-хау разработки, а именно данное изобретение автора относится к водородной энергетике, в частности к обработке металлов газотермическим способом.…
читать статью
Устройства и способы получения водорода и кислород
Способ получения высокочистого водорода

Способ получения высокочистого водорода Изобретение относится к области химии. Горячий водород, образующийся в результате реакции термохимического окисления алюминия водой, пропускают через…
читать статью
Устройства и способы получения водорода и кислород
Электролизер для получения водорода и озон-кислородной смеси

Электролизер для получения водорода и озон-кислородной смеси Изобретение относится к технологии электрохимических производств, в частности к конструкции электролизеров для получения водорода и озон-кислородной…
читать статью
Устройства и способы получения водорода и кислород
Полученная электролизом вода, содержащая растворенный водород, способ получения электролизом воды и установка для получения электролизом воды

Полученная электролизом вода, содержащая растворенный водород, способ получения электролизом воды и установка для получения электролизом воды Назначение: изобретение относится к получению электролизом воды, содержащей растворенный водород. Сущность: из водопроводной воды получают очищенную…
читать статью
Устройства и способы получения водорода и кислород
Способ и установка получения водорода

Способ и установка получения водорода Ноу-хау разработки, а именно данное изобретение автора относится к химической промышленности, в частности к способам получения особо чистого…
читать статью
Устройства и способы получения водорода и кислород
Электролизер для безопасного получения озона

Электролизер для безопасного получения озона Изобретение предназначено для получения экологически чистых озон-кислородных смесей с высокой концентрацией озона. Электролизер содержит генератор…
читать статью
Устройства и способы получения водорода и кислород
Устройство разложения воды на кислород и водород

Устройство разложения воды на кислород и водород Изобретение относится к области применения солнечной энергии для разложения воды на кислород и водород. Сущность изобретения заключается в том, что…
читать статью
Устройства и способы получения водорода и кислород
Аппарат для аккумулирования водорода

Аппарат для аккумулирования водорода Ноу-хау разработки, а именно данное изобретение автора относится к химическому машиностроению, а именно, к устройствам для аккумулирования водорода…
читать статью
Устройства и способы получения водорода и кислород
Способ получения и хранения водорода в автономных энергетических установках с электрохимическим генератором

Способ получения и хранения водорода в автономных энергетических установках с электрохимическим генератором Ноу-хау разработки, а именно данное изобретение автора относится к автономной энергетике, в частности к способу получения и хранения водорода в…
читать статью
Устройства и способы получения водорода и кислород
⇩ Вход в систему ⇩

Логин:


Пароль: (Забыли?)


 Чужой компьютер
Регистрация
и подписка на новости
⇩ Ваши закладки ⇩
Функция добавления материалов сайта в свои закладки работает только у зарегистрированных пользователей.
⇩ Новые темы форума ⇩
XML error in File: http://www.ntpo.com/forum/rss.xml
⇩ Каталог организаций ⇩
- Добавь свою организацию -
XML error in File: http://www.ntpo.com/org/rss.php
⇩ Комментарии на сайте ⇩

  • Zinfira_Davletova 07.05.2019
    Природа гравитации (5)
    Zinfira_Davletova-фото
    Очень интересная тема и версия, возможно самая близкая к истине.

  • Viktor_Gorban 07.05.2019
    Способ получения электрической ... (1)
    Viktor_Gorban-фото
     У  Скибитцкого И. Г. есть более свежее  изобретение  патент  России RU 2601286  от  2016 года
     также ,  как  и это  оно  тоже  оказалось  не востребованным.

  • nookosmizm 29.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Никакого начала не было - безконечная вселенная существует изначально, априори как безконечное пространство, заполненное  энергией электромагнитных волн, которые также существуют изначально и материей, которая  состоит из атомов и клеток, которые состоят из вращающихся ЭМ волн.
    В вашей теории есть какие-то гравитоны, которые состоят из не известно чего. Никаких гравитонов нет - есть магнитная энергия, гравитация - это магнитное притяжение.


    Никакого начала не было - вселенная, заполненная энергией ЭМ волн , существует изначально.

  • yuriy_toykichev 28.04.2019
    Энергетическая проблема решена (7)
    yuriy_toykichev-фото
    То есть, никакой энергетической проблемы не решилось от слова совсем. Так как для производства металлического алюминия, тратится уймище энергии. Производят его из глины, оксида и гидроксида алюминия, понятно что с дико низким КПД, что бы потом его сжечь для получения энергии, с потерей ещё КПД ????
    Веселенькое однако решение энергетических проблем, на такие решения никакой энергетики не хватит.

  • Andrey_Lapochkin 22.04.2019
    Генератор на эффекте Серла. Ко ... (3)
    Andrey_Lapochkin-фото
    Цитата: Adnok
    Вместо трудновыполнимых колец, я буду использовать,цилиндрические магниты, собранные в кольцевой пакет, в один, два или три ряда. На мой взгляд получиться фрактал 1 прядка. Мне кажется, что так будет эффективней, в данном случае. И в место катушек, надо попробывать бифиляры или фрактальные катушки. Думаю, хороший будет эксперимент.

    Если что будет получаться поделитесь +79507361473

  • nookosmizm 14.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Проблема в том, что человечество зомбировано религией, что бог создал всё из ничего. Но у многих не хватает ума подумать, а кто создал бога? Если бога никто не создавал - значит он существует изначально. А почему самому космосу и самой вселенной как богу-творцу - нельзя существовать изначально? 
    Единственным творцом материального мира, его составной субстанцией, источником движения и самой жизни является энергия космоса, носителем которой являются ЭМ волны, которыми как и полагается богу заполнено всё космическое пространство, включая атомы и клетки.


    В начале было то, что есть сейчас. 

  • alinzet 04.04.2019
    Новая теория мироздания - прир ... (5)
    alinzet-фото
    Но ведь это и есть эфир а не темная материя хотя эфир можете называть как вам угодно и суть от этого не изменится 

  • valentin_elnikov 26.03.2019
    Предложение о внедрении в прои ... (7)
    valentin_elnikov-фото
    а м?ожет лампочку прямо подключать к силовым линиям,хотя они и тонкие

  • serzh 12.03.2019
    Вода - энергоноситель, способн ... (10)
    serzh-фото
    От углеводородов кормится вся мировая финансовая элита, по этому они закопают любого, кто покусится на их кормушку. Это один. Два - наличие дешевого источника энергии сделает независимым от правительств стран все население планеты. Это тоже удар по кормушке.

  • nookosmizm 06.03.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Вначале было то, что существует изначально и никем не создавалось. А это
    - безграничное пространство космоса
    - безграничное время протекания множества процессов различной длительности
    - электромагнитная энергия, носителем которой являются ЭМ волны, которыми как и положено творцу (богу) материального мира, заполнено всё безграничное пространство космоса, из энергии ЭМВ состоят атомы и клетки, то есть материя.
    Надо различать материю и не материю. Материя - это то, что состоит из атомов и клеток и имеет массу гравитации, не материя - это энергия ЭМ волн, из которых и состоит материя

⇩ Топ 10 авторов ⇩
miha111
Публикаций: 1481
Комментариев: 0
pi31453_53
Публикаций: 9
Комментариев: 0
vikremlev
Публикаций: 1
Комментариев: 0
АНАТОЛИЙ
Публикаций: 0
Комментариев: 0
Patriothhv
Публикаций: 0
Комментариев: 0
agrohimwqn
Публикаций: 0
Комментариев: 0
agrohimxjp
Публикаций: 0
Комментариев: 0
Patriotzqe
Публикаций: 0
Комментариев: 0
kapriolvyd
Публикаций: 0
Комментариев: 0
agrohimcbl
Публикаций: 0
Комментариев: 0
⇩ Лучшее в Архиве ⇩

Нужна регистрация
⇩ Реклама ⇩

Внимание! При полном или частичном копировании не забудьте указать ссылку на www.ntpo.com
NTPO.COM © 2003-2021 Независимый научно-технический портал (Portal of Science and Technology)
Содержание старой версии портала
  • Уникальная коллекция описаний патентов, актуальных патентов и технологий
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения электроэнергии
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения тепловой энергии
    • Двигатели, работа которых основана на новых физических или технических принципах работы
    • Автомобильный транспорт и другие наземные транспортные средства
    • Устройства и способы получения бензина, Дизельного и других жидких или твердых топлив
    • Устройства и способы получения, хранения водорода, кислорода и биогаза
    • Насосы и компрессорное оборудование
    • Воздухо- и водоочистка. Опреснительные установки
    • Устройства и способы переработки и утилизации
    • Устройства и способы извлечения цветных, редкоземельных и благородных металлов
    • Инновации в медицине
    • Устройства, составы и способы повышения урожайности и защиты растительных культур
    • Новые строительные материалы и изделия
    • Электроника и электротехника
    • Технология сварки и сварочное оборудование
    • Художественно-декоративное и ювелирное производство
    • Стекло. Стекольные составы и композиции. Обработка стекла
    • Подшипники качения и скольжения
    • Лазеры. Лазерное оборудование
    • Изобретения и технологии не вошедшие в выше изложенный перечень
  • Современные технологии
  • Поиск инвестора для изобретений
  • Бюро научных переводов
  • Большой электронный справочник для электронщика
    • Справочная база данных основных параметров отечественных и зарубежных электронных компонентов
    • Аналоги отечественных и зарубежных радиокомпонентов
    • Цветовая и кодовая маркировка отечественных и зарубежных электронных компонентов
    • Большая коллекция схем для электронщика
    • Программы для облегчения технических расчётов по электронике
    • Статьи и публикации связанные с электроникой и ремонтом электронной техники
    • Типичные (характерные) неисправности бытовой техники и электроники
  • Физика
    • Список авторов опубликованных материалов
    • Открытия в физике
    • Физические эксперименты
    • Исследования в физике
    • Основы альтернативной физики
    • Полезная информация для студентов
  • 1000 секретов производственных и любительских технологий
    • Уникальные технические разработки для рыбной ловли
  • Занимательные изобретения и модели
    • Новые типы двигателей
    • Альтернативная энергетика
    • Занимательные изобретения и модели
    • Всё о постоянных магнитах. Новые магнитные сплавы и композиции
  • Тайны космоса
  • Тайны Земли
  • Тайны океана
Рейтинг@Mail.ru